ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Mechanisms  (1)
  • Methylotrophy  (1)
  • National Academy of Sciences  (2)
  • 2020-2024  (1)
  • 2005-2009  (1)
  • 1995-1999
  • 1
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © National Academy of Sciences, 2006. This article is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences 103 (2006): 6252-6257, doi:10.1073/pnas.0509950103.
    Beschreibung: 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and related halogenated aromatic hydrocarbons (HAHs) are highly toxic to most vertebrate animals, but there are dramatic differences in sensitivity among species and strains. Aquatic birds including the common tern (Sterna hirundo) are highly exposed to HAHs in the environment, but are up to 250-fold less sensitive to these compounds than the typical avian model, the domestic chicken (Gallus gallus). The mechanism of HAH toxicity involves altered gene expression subsequent to activation of the aryl hydrocarbon receptor (AHR), a basic helix–loop–helix-PAS transcription factor. AHR polymorphisms underlie mouse strain differences in sensitivity to HAHs and polynuclear aromatic hydrocarbons, but the role of the AHR in species differences in HAH sensitivity is not well understood. Here, we show that although chicken and tern AHRs both exhibit specific binding of [3H]TCDD, the tern AHR has a lower binding affinity and exhibits a reduced ability to support TCDD-dependent transactivation as compared to AHRs from chicken or mouse. We further show through use of chimeric AHR proteins and site-directed mutagenesis that the difference between the chicken and tern AHRs resides in the ligand-binding domain and that two amino acids (Val-325 and Ala-381) are responsible for the reduced activity of the tern AHR. Other avian species with reduced sensitivity to HAHs also possess these residues. These studies provide a molecular understanding of species differences in sensitivity to dioxin-like compounds and suggest an approach to using the AHR as a marker of dioxin susceptibility in wildlife.
    Beschreibung: This research was supported by the National Oceanographic and Atmospheric Administration National Sea Grant College Program, Department of Commerce, under Grants NA46RG0470 and NA16RG2273.
    Schlagwort(e): Basic helix–loop–helix-PAS ; Comparative toxicology ; Mechanisms ; Risk assessment ; Susceptibility
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: 1902668 bytes
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2023-03-08
    Beschreibung: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Saunders, J. K., McIlvin, M. R., Dupont, C. L., Kaul, D., Moran, D. M., Horner, T., Laperriere, S. M., Webb, E. A., Bosak, T., Santoro, A. E., & Saito, M. A. Microbial functional diversity across biogeochemical provinces in the central Pacific Ocean. Proceedings of the National Academy of Sciences of the United States of America, 119(37),(2022): e2200014119, https://doi.org/10.1073/pnas.2200014119.
    Beschreibung: Enzymes catalyze key reactions within Earth’s life-sustaining biogeochemical cycles. Here, we use metaproteomics to examine the enzymatic capabilities of the microbial community (0.2 to 3 µm) along a 5,000-km-long, 1-km-deep transect in the central Pacific Ocean. Eighty-five percent of total protein abundance was of bacterial origin, with Archaea contributing 1.6%. Over 2,000 functional KEGG Ontology (KO) groups were identified, yet only 25 KO groups contributed over half of the protein abundance, simultaneously indicating abundant key functions and a long tail of diverse functions. Vertical attenuation of individual proteins displayed stratification of nutrient transport, carbon utilization, and environmental stress. The microbial community also varied along horizontal scales, shaped by environmental features specific to the oligotrophic North Pacific Subtropical Gyre, the oxygen-depleted Eastern Tropical North Pacific, and nutrient-rich equatorial upwelling. Some of the most abundant proteins were associated with nitrification and C1 metabolisms, with observed interactions between these pathways. The oxidoreductases nitrite oxidoreductase (NxrAB), nitrite reductase (NirK), ammonia monooxygenase (AmoABC), manganese oxidase (MnxG), formate dehydrogenase (FdoGH and FDH), and carbon monoxide dehydrogenase (CoxLM) displayed distributions indicative of biogeochemical status such as oxidative or nutritional stress, with the potential to be more sensitive than chemical sensors. Enzymes that mediate transformations of atmospheric gases like CO, CO2, NO, methanethiol, and methylamines were most abundant in the upwelling region. We identified hot spots of biochemical transformation in the central Pacific Ocean, highlighted previously understudied metabolic pathways in the environment, and provided rich empirical data for biogeochemical models critical for forecasting ecosystem response to climate change.
    Beschreibung: Funding for this research was provided by the Gordon and Betty Moore Foundation (grants 3782 and 8453), the US NSF (NSF grants OCE-1924554, 2123055, 2125063, 2048774, and 2026933), the Center for Chemical Currencies on a Microbial Planet (NSF grant OCE-2019589), and the US NIH General Medicine (grant GM135709-01A1). J.K.S. was supported by a NASA Postdoctoral Program Fellowship with the NASA Astrobiology Program, administered by Universities Space Research Association under contract with NASA. A.E.S. was supported by the Sloan Foundation, the Simons Foundation, and NSF grant OCE-1437310. A portion of this research used resources at the US Department of Energy JGI sponsored by the Office of Biological and Environmental Research and operated under contract DE-AC02-05CH11231 (JGI). C.L.D. and D.K. were supported by NSF grants OCE-1558453 and OCE-2049299. T.H. was supported by NSF grant OCE-2023456.
    Schlagwort(e): Marine microbial ecology ; Metaproteomics ; Mesopelagic ; Nitrification ; Methylotrophy
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...