ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • soil organic carbon
  • Springer  (3)
  • Blackwell Publishing Ltd  (2)
  • American Institute of Physics
  • Annual Reviews
  • 2020-2024  (2)
  • 2005-2009
  • 2000-2004  (3)
  • 1980-1984
Collection
Publisher
Language
Years
Year
  • 1
    ISSN: 1573-5036
    Keywords: land use ; DOC-mobilization ; soil organic carbon
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The conversion of natural forests into cultivated lands causes changes of the carbon cycle, which are of particular importance for fragile landscapes. We examined the mobilization of organic carbon in undisturbed soil monoliths of a deciduous forest, a pine plantation, and a pasture under constant temperature (20°C) and moisture via a leaching experiment. Soil percolation was performed with synthetic rainfall solution (pH 5) for a period of 20 weeks. The leachates of the first 12 weeks were analyzed for the pH, DOC content, light absorbance at 260 and 330 nm. At the end of the experiment soil pH, total carbon, C:N ratio, content of fractions of humic substances were examined. After 20 weeks of the leaching experiment the decrease of soil total Corg reached 29, 23, and 50% in soil monoliths of deciduous forest, pasture, and coniferous forest, respectively. The amounts of DOC removed constituted 6.4, 3.8, and 6.2% of initial soil Corg, respectively. Cumulative values of DOC production decreased in the sequence coniferous forest 〉 deciduous forest 〉 pasture. UV-Vis absorptivities of DOC were similar in both forests and differed from those in pasture. UV-Vis characteristics showed that DOC composition changed during the experiment. The intensive soil percolation caused alterations of the properties of soil organic matter, in particular a change of fraction composition of humic substances occurred.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5036
    Keywords: carbon sequestration ; charcoal ; deep-rooting ; fallow ; secondary vegetation ; slash-and-burn ; soil organic carbon ; SOM ; soil litter
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The north-east of Pará state in the Eastern Amazon of Brazil was settled over 100 years ago. Today the region is an agricultural landscape with variously-aged secondary vegetation and fields with annual cultures, plantation crops and pastures. The effect of these different land covers on carbon sequestration as well as on water and nutrient extraction remain subject of debate. Therefore, we assessed the importance of land use on soil carbon stocks by measuring various C fractions and root biomass (0–6 m) in slash-and-burn systems and (semi-) permanent cultures. An extensive root system down to at least 6 m depth was present under various secondary vegetation stands and slashed and burned fields recently taken into cultivation as well as under a primary forest. Shallower rooting patterns were evident under (permanent) oil palm (4.5 m) and (semi-permanent) passion fruit plantations (2.5 m). Carbon storage in soils of traditional slash-and-burn agriculture up to 6 m depth (185 t ha-1) was not significantly lower than under a primary forest (196 t ha-1) but declined significantly under (semi-) permanent cultures (to 146–167 t ha-1). Compared to above-ground C losses, soil C losses due to slash-and-burn agriculture may thus be small. This is an argument for maintaining the secondary vegetation as part of the agricultural land-use system, as the root system of its trees is conserved and thus C is sequestered also at greater depth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-515X
    Keywords: carbon sequestration ; geostatistics ; mountain forest soils ; national assessment ; soil organic carbon
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Soil organic carbon (SOC) has been identified as the main globalterrestrial carbon reservoir, but considerable uncertainty remains as toregional SOC variability and the distribution of C between vegetationand soil. We used gridded forest soil data (8–km × 8–km)representative of Swiss forests in terms of climate and forest typedistribution to analyse spatial patterns of mineral SOC stocks alonggradients in the European Alps for the year 1993. At stand level, meanSOC stocks of 98 t C ha−1 (N = 168,coefficient of variation: 70%) were obtained for the entiremineral soil profile, 76 t C ha−1 (N =137, CV: 50%) in 0–30 cm topsoil, and 62 t Cha−1 (N = 156, CV: 46%) in0–20 cm topsoil. Extrapolating to national scale, we calculatedcontemporary SOC stocks of 110 Tg C (entire mineral soil, standarderror: 6 Tg C), 87 Tg C (0–30 cm topsoil, standarderror: 3.5 Tg C) and 70 Tg C (0–20 cm topsoil, standarderror: 2.5 Tg C) for mineral soils of accessible Swiss forests(1.1399 Mha). According to our estimate, the 0–20 cm layers ofmineral forest soils in Switzerland store about half of the Csequestered by forest trees (136 Tg C) and more than five times morethan organic horizons (13.2 Tg C). At stand level, regression analyses on the entire data set yielded nostrong climatic or topographic signature for forest SOC stocks in top(0–20 cm) and entire mineral soils across the Alps, despite thewide range of values of site parameters. Similarly, geostatisticalanalyses revealed no clear spatial trends for SOC in Switzerland at thescale of sampling. Using subsets, biotic, abiotic controls andcategorial variables (forest type, region) explained nearly 60%of the SOC variability in topsoil mineral layers (0–20 cm) forbroadleaf stands (N = 56), but only little of thevariability in needleleaf stands (N = 91,R 2 = 0.23 for topsoil layers). Considerable uncertainties remain in assessments of SOC stocks, due tounquantified errors in soil density and rock fraction, lack of data onwithin-site SOC variability and missing or poorly quantifiedenvironmental control parameters. Considering further spatial SOCvariability, replicate pointwise soil sampling at 8–km × 8–kmresolution without organic horizons will thus hardly allow to detectchanges in SOC stocks in strongly heterogeneous mountain landscapes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-12-12
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Infrared spectroscopy in the visible to near‐infrared (vis–NIR) and mid‐infrared (MIR) regions is a well‐established approach for the prediction of soil properties. Different data fusion and training approaches exist, and the optimal procedures are yet undefined and may depend on the heterogeneity present in the set and on the considered scale. The objectives were to test the usefulness of partial least squares regressions (PLSRs) for soil organic carbon (SOC), total carbon (C〈sub〉t〈/sub〉), total nitrogen (N〈sub〉t〈/sub〉) and pH using vis–NIR and MIR spectroscopy for an independent validation after standard calibration (use of a general PLSR model) or using memory‐based learning (MBL) with and without spiking for a national spectral database. Data fusion approaches were simple concatenation of spectra, outer product analysis (OPA) and model averaging. In total, 481 soils from an Austrian forest soil archive were measured in the vis–NIR and MIR regions, and regressions were calculated. Fivefold calibration‐validation approaches were carried out with a region‐related split of spectra to implement independent validations with n ranging from 47 to 99 soils in different folds. MIR predictions were generally superior over vis–NIR predictions. For all properties, optimal predictions were obtained with data fusion, with OPA and spectra concatenation outperforming model averaging. The greatest robustness of performance was found for OPA and MBL with spiking with 〈italic toggle="no"〉R〈/italic〉〈sup〉2〈/sup〉 ≥ 0.77 (N), 0.85 (SOC), 0.86 (pH) and 0.88 (C〈sub〉t〈/sub〉) in the validations of all folds. Overall, the results indicate that the combination of OPA for vis–NIR and MIR spectra with MBL and spiking has a high potential to accurately estimate properties when using large‐scale soil spectral libraries as reference data. However, the reduction of cost‐effectiveness using two spectrometers needs to be weighed against the potential increase in accuracy compared to a single MIR spectroscopy approach.〈/p〉
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:631.4 ; data fusion ; independent validation ; infrared spectroscopy ; MBL ; nitrogen ; outer product analysis ; pH ; soil organic carbon ; spiking ; total carbon
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-01-26
    Description: Erosion is a severe threat to the sustainable use of agricultural soils. However, the structural resistance of soil against the disruptive forces steppe soils experience under field conditions has not been investigated. Therefore, 132 topsoils under grass‐ and cropland covering a large range of physico‐chemical soil properties (sand: 2–76%, silt: 18–80%, clay: 6–30%, organic carbon: 7.3–64.2 g kg−1, inorganic carbon: 0.0–8.5 g kg−1, pH: 4.8–9.5, electrical conductivity: 32–946 μS cm−1) from northern Kazakhstan were assessed for their potential erodibility using several tests. An adjusted drop‐shatter method (low energy input of 60 Joule on a 250‐cm3 soil block) was used to estimate the stability of dry soil against weak mechanical forces, such as saltating particles striking the surface causing wind erosion. Three wetting treatments with various conditions and energies (fast wetting, slow wetting, and wet shaking) were applied to simulate different disruptive effects of water. Results indicate that aggregate stability was higher for grassland than cropland soils and declined with decreasing soil organic carbon content. The results of the drop‐shatter test suggested that 29% of the soils under cropland were at risk of wind erosion, but only 6% were at high risk (i.e. erodible fraction 〉60%). In contrast, the fast wetting treatment revealed that 54% of the samples were prone to become “very unstable” and 44% “unstable” during heavy rain or snowmelt events. Even under conditions comparable to light rain events or raindrop impact, 53–59% of the samples were “unstable.” Overall, cropland soils under semi‐arid conditions seem much more susceptible to water than wind erosion. Considering future projections of increasing precipitation in Kazakhstan, we conclude that the risk of water erosion is potentially underestimated and needs to be taken into account when developing sustainable land use strategies. Highlights Organic matter is the important binding agent enhancing aggregation in steppe topsoils. Tillage always declines aggregate stability even without soil organic carbon changes. All croplands soil are prone to wind or water erosion independent of their soil properties. Despite the semi‐arid conditions, erosion risk by water seems higher than by wind.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Keywords: ddc:631.4 ; climate change ; land use ; soil organic carbon ; soil texture ; water erosion ; wind erosion
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...