ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • BioMed Central  (39,750)
  • 2020-2024  (89)
  • 2010-2014  (39,661)
Collection
Years
Year
  • 1
    Publication Date: 2024-02-07
    Description: Military field exercises are characterised by high volumes of exercise and prolonged periods of load carriage. Exercise can decrease circulating serum calcium and increase parathyroid hormone and bone resorption. These disturbances to calcium and bone metabolism can be attenuated with calcium supplementation immediately before exercise. This randomised crossover trial will investigate the effect of calcium supplementation on calcium and bone metabolism, and bone mineral balance, during load carriage exercise in women. Methods Thirty women (eumenorrheic or using the combined oral contraceptive pill, intrauterine system, or intrauterine device) will complete two experimental testing sessions either with, or without, a calcium supplement (1000 mg). Each experimental testing session will involve one 120 min session of load carriage exercise carrying 20 kg. Venous blood samples will be taken and analysed for biochemical markers of bone resorption and formation, calcium metabolism, and endocrine function. Urine will be collected pre- and post-load carriage to measure calcium isotopes for the calculation of bone calcium balance. Discussion The results from this study will help identify whether supplementing women with calcium during load carriage is protective of bone and calcium homeostasis.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Background: Animals are expected to adjust their social behaviour to cope with challenges in their environment. Therefore, for fish populations in temperate regions with seasonal and daily environmental oscillations, characteristic rhythms of social relationships should be pronounced. To date, most research concerning fish social networks and biorhythms has occurred in artificial laboratory environments or over confined temporal scales of days to weeks. Little is known about the social networks of wild, freely roaming fish, including how seasonal and diurnal rhythms modulate social networks over the course of a full year. The advent of high-resolution acoustic telemetry enables us to quantify detailed social interactions in the wild over time-scales sufficient to examine seasonal rhythms at whole-ecosystems scales. Our objective was to explore the rhythms of social interactions in a social fish population at various time-scales over one full year in the wild by examining high-resolution snapshots of a dynamic social network. Methods: To that end, we tracked the behaviour of 36 adult common carp, Cyprinus carpio, in a 25 ha lake and constructed temporal social networks among individuals across various time-scales, where social interactions were defined by proximity. We compared the network structure to a temporally shuffled null model to examine the importance of social attraction, and checked for persistent characteristic groups over time. Results: The clustering within the carp social network tended to be more pronounced during daytime than nighttime throughout the year. Social attraction, particularly during daytime, was a key driver for interactions. Shoaling behavior substantially increased during daytime in the wintertime, whereas in summer carp interacted less frequently, but the interaction duration increased. Therefore, smaller, characteristic groups were more common in the summer months and during nighttime, where the social memory of carp lasted up to two weeks. Conclusions: We conclude that social relationships of carp change diurnally and seasonally. These patterns were likely driven by predator avoidance, seasonal shifts in lake temperature, visibility, forage availability and the presence of anoxic zones. The techniques we employed can be applied generally to high-resolution biotelemetry data to reveal social structures across other fish species at ecologically realistic scales.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: Marine sponges (phylum Porifera) form symbioses with diverse microbial communities that can be transmitted between generations through their developmental stages. Here, we integrate embryology and microbiology to review how symbiotic microorganisms are transmitted in this early-diverging lineage. We describe that vertical transmission is widespread but not universal, that microbes are vertically transmitted during a select developmental window, and that properties of the developmental microbiome depends on whether a species is a high or low microbial abundance sponge. Reproduction, development, and symbiosis are thus deeply rooted, but why these partnerships form remains the central and elusive tenet of these developmental symbioses.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: Background Edema is commonly seen after surgical fixation of ankle fractures. Rest, ice, compression, and elevation (RICE) is an established combination to prevent swelling but hardly able to stimulate lymphatic resorption. Recently, an epicutaneously applied negative pressure suction apparatus (LymphaTouch®) has been introduced to stimulate lymphatic flow. While postoperative recovery, soft tissue, and osseous healing as well as functional outcome are probably linked to the amount of postoperative swelling, estimates on this relative to prevention (RICE) or prevention + stimulated resorption (RICE + ) of fluid are scarce. Methods and analysis This is a single-center, evaluator-blinded randomized pilot trial to investigate postoperative swelling in adults requiring surgical fixation of a closed unilateral ankle fracture. A total of 50 patients will be recruited and randomly assigned to RICE or RICE + prior to surgery. All patients will undergo evaluator-blinded measurements of the ankle volume the day before surgery and subsequently from the evening of the 2nd postoperative day every 24 h until discharge. RICE will be initiated right after surgery and continued until discharge from the hospital in all patients. Additional application of negative pressure therapy (RICE + ) will be initiated on the morning of the 2nd postoperative day and repeated every 24 h until the time of discharge from the hospital. Outcome measures are (i) the relative amount and the time course of the postoperative swelling, (ii) the demand for analgesic therapy (type and amount) together with the perception of pain, (iii) the rate of complications, and (iv) mobility of the ankle joint and the recovery of walking abilities during a 12-weeks follow-up period. Serum and urine samples taken prior to sugery and during postoperative recovery will allow to evaluate the ratio of naturally occurring stable calcium isotopes (δ 44/42 Ca) as a marker of skeletal calcium accrual.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: Supratidal sands are vitally important for coastal defence in the German Wadden Sea. They are less affected by human activities than other areas as they are located far off the mainland shore, touristical and commercial activities are generally prohibited. Therefore, supratidal sands are of high ecological interest. Nevertheless, the faunal inventory and distribution pattern of microorganisms on these sands were studied very little. The composition of living and dead foraminiferal assemblages was therefore investigated along a transect from the supratidal sand Japsand up to Hallig Hooge. Both assemblages were dominated by calcareous foraminifera of which Ammonia batava was the most abundant species. Elphidium selseyense and Elphidium williamsoni were also common in the living assemblage, but Elphidium williamsoni was comparably rare in the dead assemblage. The high proportions of Ammonia batava and Elphidium selseyense in the living assemblage arose from the reproduction season that differed between species. While Ammonia batava and Elphidium selseyense just finished their reproductive cycles, Elphidium williamsoni was just about to start. This was also confirmed by the size distribution patterns of the different species. The dead assemblage revealed 20 species that were not found in the living assemblage of which some were reworked from older sediments (e.g., Bucella frigida) and some were transported via tidal currents from other areas in the North Sea (e.g., Jadammina macrescens). The living foraminiferal faunas depicted close linkages between the open North Sea and the mainland. Key species revealing exchange between distant populations were Haynesina germanica, Ammonia batava and different Elphidium species. All these species share an opportunistic behaviour and are able to inhabit a variety of different environments; hence, they well may cope with changing environmental conditions. The benthic foraminiferal association from Japsand revealed that transport mechanisms via tides and currents play a major ecological role and strongly influence the faunal composition at this site.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: Background: Microbiome manipulation could enhance heat tolerance and help corals survive the pressures of ocean warming. We conducted coral microbiome transplantation (CMT) experiments using the reef-building corals, Pocillopora and Porites, and investigated whether this technique can benefit coral heat resistance while modifying the bacterial microbiome. Initially, heat-tolerant donors were identified in the wild. We then used fresh homogenates made from coral donor tissues to inoculate conspecific, heat-susceptible recipients and documented their bleaching responses and microbiomes by 16S rRNA gene metabarcoding. Results: Recipients of both coral species bleached at lower rates compared to the control group when exposed to short-term heat stress (34 °C). One hundred twelve (Pocillopora sp.) and sixteen (Porites sp.) donor-specific bacterial species were identified in the microbiomes of recipients indicating transmission of bacteria. The amplicon sequence variants of the majority of these transmitted bacteria belonged to known, putatively symbiotic bacterial taxa of corals and were linked to the observed beneficial effect on the coral stress response. Microbiome dynamics in our experiments support the notion that microbiome community evenness and dominance of one or few bacterial species, rather than host-species identity, were drivers for microbiome stability in a holobiont context. Conclusions: Our results suggest that coral recipients likely favor the uptake of putative bacterial symbionts, recommending to include these taxonomic groups in future coral probiotics screening efforts. Our study suggests a scenario where these donor-specific bacterial symbionts might have been more efficient in supporting the recipients to resist heat stress compared to the native symbionts present in the control group. These findings urgently call for further experimental investigation of the mechanisms of action underlying the beneficial effect of CMT and for field-based long-term studies testing the persistence of the effect. [MediaObject not available: see fulltext.].
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: Background: Biomineralization by molluscs involves regulated deposition of calcium carbonate crystals within a protein framework to produce complex biocomposite structures. Effective biomineralization is a key trait for aquaculture, and animal resilience under future climate change. While many enzymes and structural proteins have been identified from the shell and in mantle tissue, understanding biomieralization is impeded by a lack of fundamental knowledge of the genes and pathways involved. In adult bivalves, shells are secreted by the mantle tissue during growth, maintenance and repair, with the repair process, in particular, amenable to experimental dissection at the transcriptomic level in individual animals. Results: Gene expression dynamics were explored in the adult blue mussel, Mytilus edulis, during experimentally induced shell repair, using the two valves of each animal as a matched treatment-control pair. Gene expression was assessed using high-resolution RNA-Seq against a de novo assembled database of functionally annotated transcripts. A large number of differentially expressed transcripts were identified in the repair process. Analysis focused on genes encoding proteins and domains identified in shell biology, using a new database of proteins and domains previously implicated in biomineralization in mussels and other molluscs. The genes implicated in repair included many otherwise novel transcripts that encoded proteins with domains found in other shell matrix proteins, as well as genes previously associated with primary shell formation in larvae. Genes with roles in intracellular signalling and maintenance of membrane resting potential were among the loci implicated in the repair process. While haemocytes have been proposed to be actively involved in repair, no evidence was found for this in the M. edulis data. Conclusions: The shell repair experimental model and a newly developed shell protein domain database efficiently identified transcripts involved in M. edulis shell production. In particular, the matched pair analysis allowed factoring out of much of the inherent high level of variability between individual mussels. This snapshot of the damage repair process identified a large number of genes putatively involved in biomineralization from initial signalling, through calcium mobilization to shell construction, providing many novel transcripts for future in-depth functional analyses
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-05-01
    Description: Background Recently, machine learning-based ligand activity prediction methods have been greatly improved. However, if known active compounds of a target protein are unavailable, the machine learning-based method cannot be applied. In such cases, docking simulation is generally applied because it only requires a tertiary structure of the target protein. However, the conformation search and the evaluation of binding energy of docking simulation are computationally heavy and thus docking simulation needs huge computational resources. Thus, if we can apply a machine learning-based activity prediction method for a novel target protein, such methods would be highly useful. Recently, Tsubaki et al. proposed an end-to-end learning method to predict the activity of compounds for novel target proteins. However, the prediction accuracy of the method was still insufficient because it only used amino acid sequence information of a protein as the input. Results In this research, we proposed an end-to-end learning-based compound activity prediction using structure information of a binding pocket of a target protein. The proposed method learns the important features by end-to-end learning using a graph neural network both for a compound structure and a protein binding pocket structure. As a result of the evaluation experiments, the proposed method has shown higher accuracy than an existing method using amino acid sequence information. Conclusions The proposed method achieved equivalent accuracy to docking simulation using AutoDock Vina with much shorter computing time. This indicated that a machine learning-based approach would be promising even for novel target proteins in activity prediction.
    Electronic ISSN: 1471-2105
    Topics: Biology , Computer Science
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-10-26
    Description: Background Cell-based therapeutic strategies have been proposed as an alternative for brain repair after stroke, but their clinical application has been hampered by potential adverse effects in the long term. The present study was designed to test the effect of the secretome of endothelial progenitor cells (EPCs) from stroke patients (scCM) on in vitro human models of angiogenesis and vascular barrier. Methods Two different scCM batches were analysed by mass spectrometry and a proteome profiler. Human primary CD34+-derived endothelial cells (CD34+-ECs) were used for designing angiogenesis studies (proliferation, migration, and tubulogenesis) or in vitro models of EC monolayer (confluent monolayer ECs—CMECs) and blood–brain barrier (BBB; brain-like ECs—BLECs). Cells were treated with scCM (5 μg/mL) or protein-free endothelial basal medium (scEBM—control). CMECs or BLECs were exposed (6 h) to oxygen–glucose deprivation (OGD) conditions (1% oxygen and glucose-free medium) or normoxia (control—5% oxygen, 1 g/L of glucose) and treated with scCM or scEBM during reoxygenation (24 h). Results The analysis of different scCM batches showed a good reproducibility in terms of protein yield and composition. scCM increased CD34+-EC proliferation, tubulogenesis, and migration compared to the control (scEBM). The proteomic analysis of scCM revealed the presence of growth factors and molecules modulating cell metabolism and inflammatory pathways. Further, scCM decreased the permeability of CMECs and upregulated the expression of the junctional proteins such as occludin, VE-cadherin, and ZO-1. Such effects were possibly mediated through the activation of the interferon pathway and a moderate downregulation of Wnt signalling. Furthermore, OGD increased the permeability of both CMECs and BLECs, while scCM prevented the OGD-induced vascular leakage in both models. These effects were possibly mediated through the upregulation of junctional proteins and the regulation of MAPK/VEGFR2 activity. Conclusion Our results suggest that scCM promotes angiogenesis and the maturation of newly formed vessels while restoring the BBB function in ischemic conditions. In conclusion, our results highlight the possibility of using EPC-secretome as a therapeutic alternative to promote brain angiogenesis and protect from ischemia-induced vascular leakage.
    Electronic ISSN: 1757-6512
    Topics: Biology , Medicine
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-10-29
    Description: Objective The clone devaluation is a phenomenon reported by the latest paper in which eeriness is evoked when people observe individuals with the same face (clone faces) compared to those with different faces. There are two possibilities that explain the clone devaluation effect. One is that the same facial features that clone faces have (duplication of facial features) induce the clone devaluation effect. The other possibility is that duplication of identities between people with clone faces is important for the clone devaluation effect. We thus conducted an experiment to investigate whether the duplication of identities or of facial features induces the clone devaluation effect. Results Participants evaluated eeriness of scrambled clone faces and scrambled different faces using the paired comparison method. There was only a slight difference in subjective eeriness between scrambled clone faces and scrambled different faces. Therefore, this study suggests that the duplication of local facial features does not play a key role in inducing the clone devaluation effect.
    Electronic ISSN: 1756-0500
    Topics: Biology , Medicine
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...