ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (13,822)
  • American Meteorological Society  (13,822)
  • 2020-2024  (21)
  • 2010-2014  (7,684)
  • 1995-1999  (4,982)
  • 1945-1949  (1,135)
  • Geosciences  (13,822)
  • Chemistry and Pharmacology
Collection
  • Articles  (13,822)
Years
Year
Journal
Topic
  • 1
    Publication Date: 1996-08-01
    Description: No Abstract available.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1998-12-01
    Description: No Abstract available.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-07-15
    Description: The optimal anomalous sea surface temperature (SST) pattern for forcing North American drought is identified through atmospheric general circulation model integrations in which the response of the Palmer drought severity index (PDSI) is determined for each of 43 prescribed localized SST anomaly “patches” in a regular array over the tropical oceans. The robustness and relevance of the optimal pattern are established through the consistency of results obtained using two different models, and also by the good correspondence of the projection time series of historical tropical SST anomaly fields on the optimal pattern with the time series of the simulated PDSI in separate model integrations with prescribed time-varying observed global SST fields for 1920–2005. It is noteworthy that this optimal drought forcing pattern differs markedly in the Pacific Ocean from the dominant SST pattern associated with El Niño–Southern Oscillation (ENSO), and also shows a large sensitivity of North American drought to Indian and Atlantic Ocean SSTs.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-06-15
    Description: Regional extratropical tropospheric variability in the North Pacific and eastern Europe is well correlated with variability in the Northern Hemisphere wintertime stratospheric polar vortex in both the ECMWF reanalysis record and in the Whole Atmosphere Community Climate Model. To explain this correlation, the link between stratospheric vertical Eliassen–Palm flux variability and tropospheric variability is analyzed. Simple reasoning shows that variability in the North Pacific and eastern Europe can deepen or flatten the wintertime tropospheric stationary waves, and in particular its wavenumber-1 and -2 components, thus providing a physical explanation for the correlation between these regions and vortex weakening. These two pathways begin to weaken the upper stratospheric vortex nearly immediately, with a peak influence apparent after a lag of some 20 days. The influence then appears to propagate downward in time, as expected from wave–mean flow interaction theory. These patterns are influenced by ENSO and October Eurasian snow cover. Perturbations in the vortex induced by the two regions add linearly. These two patterns and the quasi-biennial oscillation (QBO) are linearly related to 40% of polar vortex variability during winter in the reanalysis record.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-07-15
    Description: The spatiotemporal characteristics of the winter-to-winter recurrence (WWR) of sea surface temperature anomalies (SSTA) in the Northern Hemisphere (NH) are comprehensively studied through lag correlation analysis. On this basis the relationships between the SSTA WWR and the WWR of the atmospheric circulation anomalies, El Niño–Southern Oscillation (ENSO), and SSTA interdecadal variability are also investigated. Results show that the SSTA WWR occurs over most parts of the North Pacific and Atlantic Oceans, but the spatiotemporal distributions of the SSTA WWR are distinctly different in these two oceans. Analyses indicate that the spatiotemporal distribution of the SSTA WWR in the North Atlantic Ocean is consistent with the spatial distribution of the seasonal cycle of its mixed layer depth (MLD), whereas that in the North Pacific Ocean, particularly the recurrence timing, cannot be fully explained by the change in the MLD between winter and summer in some regions. In addition, the atmospheric circulation anomalies also exhibit the WWR at the mid–high latitude of the NH, which is mainly located in eastern Asia, the central North Pacific, and the North Atlantic. The sea level pressure anomalies (SLPA) in the central North Pacific are essential for the occurrence of the SSTA WWR in this region. Moreover, the strongest positive correlation occurs when the SLPA lead SSTA in the central North Pacific by 1 month, which suggests that the atmospheric forcing on the ocean may play a dominant role in this region. Therefore, the “reemergence mechanism” is not the only process influencing the SSTA WWR, and the WWR of the atmospheric circulation anomalies may be one of the causes of the SSTA WWR in the central North Pacific. Finally, the occurrence of the SSTA WWR in the NH is closely related to SSTA interdecadal variability in the NH, but it is linearly independent of ENSO.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-07-15
    Description: This study is the last in a series of papers addressing the dynamics of the West African summer monsoon at intraseasonal time scales between 10 and 90 days. The signals of convectively coupled equatorial Rossby (ER) waves within the summer African monsoon have been investigated after filtering NOAA outgoing longwave radiation (OLR) data within a box delineated by the dispersion curves of the theoretical ER waves. Two families of waves have been detected in the 10–100-day periodicity band by performing a singular spectrum analysis on a regional index of ER-filtered OLR. For each family the first EOF mode has been retained to focus on the main convective variability signal. Within the periodicity band of 30–100 days, an ER wave pattern with an approximate wavelength of 13 500 km has been depicted. This ER wave links the MJO mode in the Indian monsoon sector with the main mode of convective variability over West and central Africa. This confirms the investigations carried out in previous studies. Within the 10–30-day periodicity band, a separate ER wave pattern has been highlighted in the African monsoon system with an approximate wavelength of 7500 km, a phase speed of 6 m s−1, and a period of 15 days. The combined OLR and atmospheric circulation pattern looks like a combination of ER wave solutions with meridional wavenumbers of 1 and 2. Its vertical baroclinic profile suggests that this wave is forced by the deep convective heating. Its initiation in terms of OLR modulation is detected north of Lake Victoria, extending northward and then propagating westward along the Sahel latitudes. The Sahel mode identified in previous studies corresponds to the second main mode of convective variability within the 10–30-day periodicity band, and this has also been examined. Its pattern and evolution look like the first-mode ER wave pattern and they are temporally correlated with a coefficient of +0.6. About one-third of the Sahel mode events are concomitant with an ER wave occurrence. The main difference between these two signals consists of a stronger OLR and circulation modulation of the Sahel mode over East and central Africa. Thus, the Sahel mode occurrence and its westward propagation could be explained in part by atmospheric dynamics associated with the ER waves and in part by land surface interactions, as shown in other studies.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-06-01
    Description: The generalized extreme value (GEV) distribution is fitted to winter season daily maximum precipitation over North America, with indices representing El Niño–Southern Oscillation (ENSO), the Pacific decadal oscillation (PDO), and the North Atlantic Oscillation (NAO) as predictors. It was found that ENSO and PDO have spatially consistent and statistically significant influences on extreme precipitation, while the influence of NAO is regional and is not field significant. The spatial pattern of extreme precipitation response to large-scale climate variability is similar to that of total precipitation but somewhat weaker in terms of statistical significance. An El Niño condition or high phase of PDO corresponds to a substantially increased likelihood of extreme precipitation over a vast region of southern North America but a decreased likelihood of extreme precipitation in the north, especially in the Great Plains and Canadian prairies and the Great Lakes/Ohio River valley.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-06-01
    Description: Anthropogenic forcings, such as greenhouse gases and aerosols, are starting to show their influence on the climate, as evidenced by a global warming trend observed in the past century. The weakening of tropical circulation, a consequence of global warming, has also been found in observations and in twenty-first-century climate model simulations. It is a common belief that this weakening of tropical circulation is associated with the fact that global-mean precipitation increases more slowly than water vapor. Here, a new mechanism is proposed for this robust change, which is determined by atmospheric stability associated with the depth of convection. Convection tends to extend higher in a warmer climate because of an uplifting of the tropopause. The higher the convection, the more stable the atmosphere. This leads to a weakening of tropical circulation.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2010-06-15
    Description: The authors examine the projected change in interannual variability of East Asian summer precipitation and of dominant monsoonal circulation components in the twenty-first century under scenarios A1B and A2 by analyzing the simulated results of 12 Coupled Model Intercomparison Project phase 3 (CMIP3) coupled models. Interannual standard deviation is used to depict the intensity of interannual variability. An evaluation indicates that these models can reasonably reproduce the essential features of the present-day interannual variability in both East Asian rainfall and the rainfall-related circulations. The models project an enhanced interannual variability of summer rainfall over East Asia in the twenty-first century, under both scenarios A1B and A2. Over the East Asian summer rain belt, 10 of the 12 models under scenario A1B and 9 of the 10 models under scenario A2 show enhanced variability in the twenty-first century relative to the twentieth century. The multimodel ensemble (MME) results in increased ratios of interannual standard deviation of precipitation averaged over this region of about 12% and 19% under scenarios A1B and A2, respectively. Furthermore, it is found that the interannual variability is intensified much more remarkably in comparison with mean precipitation. Two circulation factors, the western North Pacific subtropical high (WNPSH) and East Asian upper-tropospheric jet (EAJ), which are closely related to the interannual variability of East Asian summer rainfall, are also projected by the models to exhibit enhanced interannual variability in the twenty-first century. This provides more evidence for the enhancement of interannual variability in East Asian summer rainfall and implies intensified interannual variability of the whole East Asian summer monsoon system. On the other hand, the relationships of East Asian rainfall with the WNPSH and EAJ do not exhibit clear changes in the twenty-first century under scenarios A1B and A2, and there are great discrepancies in the changes of the relationships among the individual models.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-06-15
    Description: The diurnal temperature range (DTR) of surface air over land varies geographically and seasonally. The authors have investigated these variations using generalized additive models (GAMs), a nonlinear regression methodology. With DTR as the response variable, meteorological and land surface parameters were treated as explanatory variables. Regression curves related the deviation of DTR from its mean value to values of the meteorological and land surface variables. Cloud cover, soil moisture, distance inland, solar radiation, and elevation were combined as explanatory variables in an ensemble of 84 GAM models that used data grouped into seven vegetation types and 12 months. The ensemble explained 80% of the geographical and seasonal variation in DTR. Vegetation type and cloud cover exhibited the strongest relationships with DTR. Shortwave radiation, distance inland, and elevation were positively correlated with DTR, whereas cloud cover and soil moisture were negatively correlated. A separate analysis of the surface energy budget showed that changes in net longwave radiation represented the effects of solar and hydrological variation on DTR. It is found that vegetation and its associated climate is important for DTR variation in addition to the climatic influence of cloud cover, soil moisture, and solar radiation. It is also found that surface net longwave radiation is a powerful diagnostic of DTR variation, explaining over 95% of the seasonal variation of DTR in tropical regions.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...