ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (12,374)
Collection
Language
Years
Year
  • 1
    Publication Date: 2022-12-05
    Description: The EUREF Permanent GNSS Network (EPN) provides a unique atmospheric dataset over Europe in the form of Zenith Total Delay (ZTD) time series. These ZTD time series are estimated independently by different analysis centers, but a combined solution is also provided. Previous studies showed that changes in the processing strategy do not affect trends and seasonal amplitudes. However, its effect on the temporal and spatial variations of the stochastic component of ZTD time series has not yet been investigated. This study analyses the temporal and spatial correlations of the ZTD residuals obtained from four different datasets: one solution provided by ASI (Agenzia Spaziale Italiana Centro di Geodesia Spaziale, Italy), two solutions provided by GOP (Geodetic Observatory Pecny, Czech Republic), and one combined solution resulting from the EPN’s second reprocessing campaign. We find that the ZTD residuals obtained from the three individual solutions can be modeled using a first-order autoregressive stochastic process, which is less significant and must be completed by an additional white noise process in the combined solution. Although the combination procedure changes the temporal correlation in the ZTD residuals, it neither affects its spatial correlation structure nor its time-variability, for which an annual modulation is observed for stations up to 1,000 km apart. The main spatial patterns in the ZTD residuals also remain identical. Finally, we compare two GOP solutions, one of which only differs in the modeling of non-tidal atmospheric loading at the observation level, and conclude that its modeling has a negligible effect on ZTD values.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-12-02
    Description: Temporal aliasing errors resulting from the undersampling of non-tidal atmospheric as well as oceanic mass variations constitute the largest limitation towards the retrieval of monthly gravity solutions based on GRACE and GRACE-FO satellite gravity missions. Their mitigation is thus a primary goal of current research. Unfortunately, the two-step co-parametrization approach proposed for application in Bender-type gravity retrieval scenario in Wiese et al. yields no added value for a single satellite pair. A detailed study of this parametrization strategy is carried out and it is shown that the reason for this is the flawed central assumption of the proposed method, that is that signals of different spatial wavelengths can be perfectly captured and separated with respect to their temporal extent. Based on this finding, we derive a multi-step self-de-aliasing approach (DMD) which aims to rectify the shortcoming of the Wiese et al. method specifically for the single-pair case while retaining its independence from background-model-based de-aliasing of non-tidal atmosphere and ocean (AO) signal components. The functionality and added value of this novel approach is validated within a set of numerical closed-loop simulations as well as in real GRACE and GRACE-FO data processing. The simulation results show that the DMD may improve the gravity retrieval performance in the high-degree spectrum by more than one order of magnitude if one aims to retrieve the full AOHIS (i.e. atmosphere, ocean, hydrology, ice, solid earth) signal, and by at least a factor 5 if a priori AO de-aliasing is applied. Simultaneously, the DMD is shown to degrade the retrieval of the low degrees, but it is also demonstrated that this issue can be mitigated by introducing a constraint into the processing scheme. The simulation results are widely confirmed by results obtained from applying the DMD to real GRACE/GRACE-FO data of the test years 2007, 2014 and 2019. The applicability of the DMD is further shown for Bender-type gravity retrieval. It is demonstrated that in case of a double-pair-based gravity retrieval this approach is at least equivalent to the Wiese et al. method.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-11-14
    Description: The Pan-African belts of Malawi contain a largely unexplored endowment of gem bearing pegmatites. We present U–Pb in zircon (LA-ICPMS) and Rb–Sr mineral isochron geochronological and isotope data from pegmatites across Malawi. The pegmatites contain tourmaline, beryl, aquamarine, zircon, amethyst and sunstone as gemstone species. Two zircon bearing pegmatites in southern Malawi intruded early in the Pan-African orogenic cycle at 719 ± 5 Ma and 729 ± 4 Ma and are associated with the emplacement of alkaline rocks that formed during an intra-continental rifting episode in the eastern part of former Rodinia. One further zircon pegmatite containing inherited zircon of a similar age (746 ± 44 Ma) was emplaced at 598 ± 15 Ma, after the assembly of Western and Eastern Gondwana and the formation of the East African Orogen (EAO). The majority of the analysed pegmatites, however, are significantly younger. The ∼550 Ma pegmatites were emplaced during the Kuunga Orogeny, correlating with the collision of northern and southern Gondwana cratonic entities. During a prolonged post-collisional period, possibly related to crustal collapse and extension, further gem-mineralised pegmatites formed at ∼520 ± 6 Ma and ∼500–485 Ma. The youngest pegmatite intruded in the southern Malawian Ntcheu area in the Middle Ordovician at ∼460 Ma. A large spread in 87Sr/86Sr initial isotopic ratios between 0.70556 and 0.79018 suggests a variety of magma sources for the Kuunga-related pegmatites with a variably strong crustal affinity.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-11-14
    Description: Fault zones often serve as the major fluid pathways in a variety of geo-energy systems, such as deep geothermal systems. However, injection-induced instability of faults can sometimes lead to large-magnitude earthquakes. Cyclic injection has thus been proposed as an alternative injection protocol to better manage and mitigate the associated seismic risks. The risks of injection-induced seismicity depend primarily on the extent and magnitude of the fluid pressure perturbation. When fluid is injected into a fault zone, the local fault permeability will be enhanced, which in turn promotes the migration of fluid along the fault. This nonlinear process is further complicated during cyclic injection via alternating the injection pressure. In this study, both numerical and analytical modeling are conducted to investigate cyclic fluid injection into a fault zone with pressure sensitive permeability, in which the local fault permeability changes as a function of the local effective stress. The match with laboratory-scale experimental and field-scale analytical results of cyclic fluid injection verifies the accuracy of the numerical model. The parametric study reveals that the injection pressure attenuation, quantified by the amplitude ratio and phase shift, is enhanced by a lower initial fault permeability, a smaller stress sensitivity coefficient, and a shorter period of pressure cycle (i.e. a higher frequency). Besides, the amplitude of the pressure cycle has a negligible effect on the injection pressure attenuation. We also discuss the implications of our results for the less amenable far-field seismic hazard and post shut-in seismicity.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  Marine Analytical Chemistry
    Publication Date: 2022-11-17
    Type: info:eu-repo/semantics/bookPart
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-12-14
    Description: Ilmenite and olivine megacrysts from the 89 Ma Monastery kimberlite (Kaapvaal Craton, South Africa) captured abundant and large melt inclusions containing quenched Si-Mg-rich melt, calcite, spinel, perovskite, phlogopite, and serpentine. Textural observations and 3D X-ray tomography of ilmenite and olivine megacrysts show melt inclusion shapes, sizes and distribution patterns indicative of melt capture during primary crystal growth near the base of the subcontinental lithospheric mantle (SCLM). Patterns supporting secondary melt injection along fractures or veins, such as planar arrays of melt inclusions, are absent. Melt inclusions in olivine, in some examples reaching the dimension of centimetres, likely were captured in skeletal voids forming in fast growing, up to decimetre-sized olivine megacrysts. These large melt inclusions commonly decrepitated, forming apophyses, radial fractures, and veins, along which residual volatile- and Si-Mg-rich melt was extracted. We attribute the decrepitation of melt inclusions in olivine to the rapidly increasing difference between the melt pressure in the inclusions, captured at mantle depth, and the decreasing confining stress to which the host olivines were exposed during magma ascent and after emplacement. In ilmenite, melt inclusions up to ∼ 6 mm in diameter remained commonly intact during the kimberlite ascent from its mantle source to the shallow crust. The quenched silicate melt in olivine- and ilmenite-hosted melt inclusions, in some places preserved as unaltered hydrous and CO3-bearing glass, shows systematic major element compositional variations that suggest that this melt formed by similar fractionation and depletion processes, irrespective of the hosting megacryst phase. Apparent modal variations in quenched silicate melt, calcite, and oxide contents suggest that the melt batches captured as inclusions in ilmenite and olivine either record different evolution stages in the megacryst magma, or document compositional heterogeneities in this magma at the time of megacryst growth.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  Christa Sommerer & Laurent Mignonneau: The Artwork as a Living System 1992–2022
    Publication Date: 2022-10-05
    Language: English
    Type: info:eu-repo/semantics/bookPart
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-10-14
    Description: Evaluating the embodied environmental impact of solar photovoltaic (PV) technology has been an important topic in addressing the sustainable development of renewable energy. While monetization of environmental externality is a remaining issue, which should be carried out in order to allow for an easy-to-understand comparison between direct economic and external cost. In this study, the environmental impact of solar PV power is monetized through conversion factors between midpoint and endpoint categories of life cycle analysis and the monetization weighting factor. Then, the power generation capacity and generation life of PV and coal-fired power plants are assumed to be consistent in order to compare the total cost of PV and coal-fired power generation. Results show that the cost of PV technology is higher than coal-fired in 2026 to 2030, taking into account environmental external costs and production costs. However, by 2030, the total cost of coal-fired power will be higher than that of solar PV. The life span cost per kWh is $3.55 for solar PV and $116.25 for coal-fired power. Although solar PV power seems more environmentally effective than coal-fired power in the life span, our results reveal the high environmental external cost of producing solar photovoltaic modules, which reminds us to pay more attention to the environmental impact when conducting cost-benefit analysis of renewable technologies. Without incorporating the environmental cost, the real cost of renewable technology will be underestimated.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-25
    Description: The seismic receiver function (RF) technique is widely used as an economic method to image earth's deep interior in a large number of seismic experiments. P-wave receiver functions (RFs) constrain crustal thickness and average Vp/Vs in the crust by analysis of the Ps phase and multiples (reflected/converted waves) from the Moho. Regional studies often show significant differences between the Moho depth constrained by RF and by reflection/refraction methods. We compare the results from RF and controlled source seismology for the Baikal Rift Zone by calculating 1480 synthetic RFs for a seismic refraction/reflection velocity model and processing them with two common RF techniques [H–κ and Common Conversion Point (CCP) stacking]. We compare the resulting synthetic RF structure with the velocity model, a density model (derived from gravity and the velocity model), and with observed RFs. Our results demonstrate that the use of different frequency filters, the presence of complex phases from sediments and gradual changes in the properties of crustal layers can lead to erroneous interpretation of RFs and incorrect geological interpretations. We suggest that the interpretation of RFs should be combined with other geophysical methods, in particular in complex tectonic regions and that the long-wavelength Bouguer gravity anomaly signal may provide effective calibration for the determination of the correct Moho depth from RF results. We propose and validate a new automated, efficient method for this calibration.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-11-02
    Description: The investigation of innovative macroalgal cultivation is important and needed to optimize farming operations, increase biomass production, reduce the impact on the ecosystem, and lower system and operational costs. However, most macroalgal farming systems (MFSs) are stationary, which need to occupy a substantial coastal area, require extensive investment in farm infrastructure, and cost high fertilizer and anchoring expenses. This study aims to model, analyze, and support a novel binary species free-floating longline macroalgal cultivation concept. The expected outcomes could provide a basis for the design and application of the novel MFS to improve biomass production, decrease costs, and reduce the impact on the local ecosystem. In this paper, Saccharina latissima and Nereocystis luetkeana were modeled and validated, and coupled with longline to simulate the binary species MFS free float in various growth periods and associated locations along the US west coast. The numerical predictions indicated the possibility of failure on the longline and breakage at the kelp holdfasts is low. However, the large forces due to an instantaneous change in dynamic loads caused by loss of hydrostatic buoyancy when the longline stretches out of the water would damage the kelps. Buoy-longline contact interactions could damage the buoy, resulting in the loss of the system by sinking. Furthermore, the kelp-longline and kelp-kelp entanglements could potentially cause kelp damage.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-11-02
    Description: Ground-based observational characterization of atmosphere aerosols over Central Asia is very limited. This study investigated the columnar aerosol characteristics over Issyk-Kul, Kyrgyzstan, a background site in Central Asia using the long-term (∼14 years: August 2007–November 2021) data acquired with the Cimel sunphotometer. The mean aerosol optical depth (AOD) and Ångström exponent (AE) during the observation period were 0.14 ± 0.10 and 1.19 ± 0.41, respectively. Both AOD and AE varied across seasons, with highest AOD in spring (0.17 ± 0.17). Regarding the aerosol types, clean continental aerosols were dominant type (65%), followed by mixed aerosols (∼19%), clean marine aerosols (∼14%), dust (0.8%), and urban/industrial and biomass burning aerosol (0.7%). The aerosol volume size distribution was bimodal indicating the influence of both anthropogenic and natural aerosols with clear dominance of coarse mode during the spring season. Mainly dust and mixed aerosols were present during high aerosol episodes while the coarse mode aerosol volume concentration was 7.5 (strong episodes) and ∼19 (extreme episodes) times higher than the whole period average. Aerosol over this background sites were from local and regional sources with some contribution of long-range transport.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-11-22
    Description: Millions of people are exposed to enhanced levels of nitrogen dioxide in urbanized areas, leading to severe health effects. Moreover, nitrogen oxides contribute to the formation of ozone and particulate matter, and as such have wider health related impacts. A substantial reduction of nitrogen oxides may offer considerable health benefits for the human society. As a first step, this requires a detailed understanding of source sector contributions to nitrogen oxide levels. Whereas many regions have information on the local (traffic) contributions, the source contributions to the rural and urban background levels are commonly not available. In this study we compared and evaluated the results of two source attribution techniques to quantify the contribution of 5 source sectors to background nitrogen oxide levels across Germany. The results of a labelling technique were compared to brute force simulations with variable emission reduction percentages. The labelled NO2 source contributions of the main sectors averaged for all urban background stations are road transport (45 ± 5%), non-road transport (24 ± 6%), energy & industry (20 ± 3%), households (10 ± 6%), and the remaining source sectors (1 ± 1%). For the brute force technique, the explained mass differs from the unperturbed baseline concentration after scaling the impact of each sensitivity simulation to 100%. The attributed concentration of NO2 is lower in urban background areas (−3 ± 5%) and larger in the rural background (4 ± 6%) than that of the labelling. Largest deviations up to −15% are calculated for the major cities along the Rhine and Main. The annual average overestimation for NO is about 53 ± 24% for urban and 40 ± 26% for rural background sites based on a 20% reduction of emissions. On shorter time scales the differences are larger. These deviations are caused by (the lack of) regime changes in the titration of ozone, most notably present at ozone-limiting conditions during nocturnal winter periods. As a consequence, the differences between the methodologies are larger for smaller emission reduction percentages applied in the brute force technique. Similarly, for small-sized emission source sectors larger deviations were found compared to large-sized sector categories. Hence, applying the brute force technique for the source attribution for a single sector should be avoided as there is no way to verify for consistency and quantify the error for the sector and total explained contribution. We recommend applying the labelling approach to estimate sector contributions in forthcoming studies for nitrogen oxides.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-11-25
    Description: This literature review presents major environmental indicators and their optimum variation ranges for the prevalence of Vibrio parahaemolyticus in the marine environment by critically reviewing and statistically analyzing more than one hundred studies from countries around the world. Results of this review indicated that the prevalence of Vibrio parahaemolyticus in the marine environment is primarily responsive to favorable environmental conditions that are described with environmental indicators. The importance of environmental indicators to the prevalence of Vibrio parahaemolyticus can be ranked from the highest to lowest as Sea Surface Temperature (SST), salinity, pH, chlorophyll a, and turbidity, respectively. It was also found in this study that each environmental indicator has an optimum variation range favoring the prevalence of Vibrio parahaemolyticus. Specifically, the SST range of 25.67 ± 2 °C, salinity range of 27.87 ± 3 ppt, and pH range of 7.96 ± 0.1 were found to be the optimum conditions for the prevalence of Vibrio parahaemolyticus. High vibrio concentrations were also observed in water samples with the chlorophyll a range of 16–25 μg/L. The findings provide new insights into the importance of environmental indicators and their optimum ranges, explaining not only the existence of both positive and negative associations reported in the literature but also the dynamic associations between the Vibrio presence and its environmental drivers.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-12-07
    Description: The United Nations is dedicated to bringing countries together to solve international problems and to shape a better future. One of the greatest challenges facing society today is meeting the population’s basic needs, while protecting the environment, hence the UN Sustainable Development Goals — 17 goals to overcome current and future sustainability challenges. We incorporate the 17 goals into a simplified global socio-ecological model to analyze what actions are necessary to promote a desirable future. We find that the current population size and resource use are not sustainable with any one goal or combination of goals. In the sustainable scenarios described here the global population decreases, while maintaining higher consumption levels. We estimate that sustainability hinges on maintaining an equivalence between natural and agricultural land areas and the human population — approximately 1ha of land per person is necessary to promote human well-being and environmental sustainability. Furthermore, we find that long-term sustainability hinges on changes within the next 50 years and goals that solely target environmental degradation or consumption are too slow to drive sustainability. Social progress is occurring much faster than environmental progress, therefore actions that target shifts in power dynamics, inequality, development and education in lower income countries should be prioritized to maintain ecosystem services and promote well-being. The goals that incorporate a combination of socio-ecological policies (SDGs 3,6,8,9,10,11) promote well-being and sustainability.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-12-12
    Description: Although parasitism is one of the most common species interactions in nature, the role of parasites in their hosts' thermal tolerance is often neglected. This study examined the ability of the trematode Podocotyle atomon to modulate the feeding and stress response of Gammarus locusta towards temperature. To accomplish this, infected and uninfected females and males of Gammarus locusta were exposed to temperatures (2, 6, 10, 14, 18, 22, 26, 30 °C) for six days. Shredding (change in food biomass) and defecation rates (as complementary measure to shredding rate) were measured as proxies for feeding activity. Lipid and glycogen concentrations (energy reserves), catalase (oxidative stress indicator), and phenoloxidase (an immunological response in invertebrates) were additionally measured. Gammarid survival was optimal at 10 °C as estimated by the linear model and was unaffected by trematode infection. Both temperature and sex influenced the direction of infection effect on phenoloxidase. Infected females presented lower phenoloxidase activity than uninfected females at 14 and 18 °C, while males remained unaffected by infection. Catalase activity increased at warmer temperatures for infected males and uninfected females. Higher activity of this enzyme at colder temperatures occurred only for infected females. Infection decreased lipid content in gammarids by 14 %. Infected males had significantly less glycogen than uninfected, while infected females showed the opposite trend. The largest infection effects were observed for catalase and phenoloxidase activity. An exacerbation of catalase activity in infected males at warmer temperatures might indicate (in the long-term) unsustainable, overwhelming, and perhaps lethal conditions in a warming sea. A decrease in phenoloxidase activity in infected females at warmer temperatures might indicate a reduction in the potential for fighting opportunistic infections. Results highlight the relevance of parasites and host sex in organismal homeostasis and provide useful insights into the organismal stability of a widespread amphipod in a warming sea.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-12-15
    Description: Highlights • Role of salt leaching in seafloor stability is assessed via experiments and models. • Undrained cohesive strength of clayey silt subjected to leaching decreased by 50%. • Failure occurs when flushed layer is 〉3.5 m thick and slope gradient is 〉3°. Abstract Offshore freshened groundwater (OFG) has been documented in many continental margins worldwide. OFG systems are dynamic, expanding and contracting with falling and rise sea-levels. OFG has long been thought to be an important geomorphic agent in continental margins, either via active discharge at the seafloor, which can erode depressions, or the generation of excess pore pressure, which can deform sediments and cause slope failure. It has also been proposed that OFG flow can drive the loss of sediment shear strength via salt leaching, when seawater in pores is replaced by freshwater. Here, we measure changes in the geotechnical properties of seafloor clayey silt due to salt leaching using flushing experiments, and assess the implications of these changes on the stability of siliciclastic continental margins with 2D limit equilibrium modelling. We document a ~ 50% decrease in undrained cohesive strength of seafloor sediment after flushing, as well as a decrease in its shear strength, bulk density, and moisture content, which is similar to that reported for subaerial quick clays undergoing salt leaching. When applied to a theoretical submarine domain 300 m wide by 100 m high, we estimate that salt leaching can trigger slope failure when the thickness of the flushed layer is 〉3.5 m or when the slope gradient is 〉3°. Such conditions are primarily satisfied on the continental slope or the shallow seafloor close to the shoreline. Salt leaching by OFG flow merits consideration as a potential mechanism destablising submarine sedimentary slopes.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-12-19
    Description: Highlights • The hydrothermal fluids were sampled from a neovolcanic ridge within a non-transform offset. • Serpentinization has been involved on the pathway of hydrothermal circulation • The fluids are strongly affected by phase separation with extremely high Cl content in brine phase • A hybrid model of hydrothermal circulation controlled by tectonic and magmatic activities simultaneously was proposed. The Daxi Vent Field (DVF) is located on a neovolcanic ridge within a non-transform offset at water depths of ∼3500 m, on the Carlsberg Ridge, northwest Indian Ocean. In 2017, we investigated this site using the submersible Jiaolong and collected two fluid samples from orifices of chimneys named “Buddha's Hands” and “A1”, about 37 m apart. Their in-situ measured temperatures are 273 °C and 272 °C, respectively. The Buddha's Hands fluid is highly Cl-enriched (928 mM), while the A1 fluid is Cl-depleted (303 mM). This indicates that they have undergone phase separation. The segregated phases must have remixed during the ascent because the vapor and brine phases sampled cannot be produced by the same phase separation history without other processes. Olivine-rich and/or ultramafic mantle rocks must have been involved during the hydrothermal circulation as evidenced by high dissolved H2 (7.07 mM) and methane (0.884 mM) concentrations, a depletion in B relative to seawater, high Ca and low K, and large positive Eu anomalies. The Fe content in Buddha's Hands fluid is extremely high (11,900 μM) as a result of phase separation, while the Cu concentrations in both fluids are relatively low due to entrainment of seawater which results in precipitation of Cu-rich sulfides in the subseafloor. The concentrations of Zn, Ag, Ga, Sn, Sb, and Cd in A1 vent fluid are significantly elevated due to generation of acidity and remobilization of these elements as Cu-rich sulfides are deposited. The subseafloor processes and associated geochemistry of hydrothermal fluids at the DVF are distinct from other mid-ocean ridge hydrothermal systems due to the specific geologic setting. Hence a hybrid model of hydrothermal circulation is proposed. This study broadens our understanding of the hydrothermal processes occurring in areas of NTO setting and provides more information on mass fluxes discharging from hydrothermal systems and the formation of sulfide deposits.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-12-19
    Description: We interpret the crustal and upper mantle structure along ∼2500 km long seismic profiles in the northeastern part of the Sino-Korean Craton (SKC). The seismic data with high signal-to-noise ratio were acquired with a nuclear explosion in North Korea as source. Seismic sections show several phases including Moho reflections (PmP) and their surface multiple (PmPPmP), upper mantle refractions (P), primary reflections (PxP, PL, P410), exceptionally strong multiple reflections from the Moho (PmPPxP), and upper mantle scattering phases, which we model by ray-tracing and synthetic seismograms for a 1-D fine-scale velocity model. The observations require a thin crust (30 km) with a very low average crustal velocity (ca. 6.15 km/s) and exceptionally strong velocity contrast at the Moho discontinuity, which can be explained by a thin Moho transition zone (〈 5 km thick) with strong horizontal anisotropy. We speculate that this anisotropy was induced by lower crustal flow during delamination dripping. An intra-lithospheric discontinuity (ILD) at ∼75 km depth with positive velocity contrast is probably caused by the phase transformation from spinel to garnet. Delayed first arrivals followed by a long wave train of scattered phases of up to 4 s duration are observed in the 800–1300 km offset range, which are modelled by continuous stochastic velocity fluctuations in a low-velocity zone (LVZ) below the Mid-Lithospheric Discontinuity (MLD) between 120 and 190 km depth. The average velocity of this LVZ is about 8.05 km/s, which is much lower than the IASP91 standard model. This LVZ is most likely caused by rocks which are either partially molten or close to the solidus, which explains both low velocity and the heterogeneous structure.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-12-22
    Description: This chapter aims at introducing the reader to general concepts about the main forcings of the Mediterranean Sea, in terms of exchanges through the Strait of Gibraltar, and air-sea exchanges of heat, freshwater, and momentum. These forcings are also responsible for the peculiar characteristics of Mediterranean water masses. Therefore, the chapter continues with giving a general explanation on water mass analysis, and then it describes the properties and vertical and horizontal distributions of the main Mediterranean water masses. To conclude, the reader is introduced to the use of other (biogeochemical, and chemical) tracers of water masses, with a focus on the Mediterranean Sea.
    Type: Book chapter , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-12-22
    Description: Salient, long-term solutions to address global environmental change hinge on management strategies that are inclusive of local voices and that recognize the array of values held by surrounding communities. Group-based participatory processes that involve deliberation of multiple stakeholders with varying perspectives—particularly social learning—hold promise to advance inclusive conservation by identifying and creating a shared understanding of the landscape. However, few studies have empirically investigated how the value basis of stakeholder deliberation changes over time in relation to social learning. This study provided a novel platform for local stakeholders from Interior Alaska to deliberate on landscape change and associated management practices in ways that shifted their value orientations. In particular, we used a pre-test, post-test experimental design involving mixed methods to measure how different types of values changed as a result of social learning through an online discussion forum. We found evidence that social learning: 1) activated shared values that were previously hidden through building a relational understanding of others, and 2) shifted values that spanned three levels of psychological stability. As hypothesized, social values that represented expressed preferences for landscape change were most likely to shift in association with social learning. Conversely, shifts in individual values towards self-transcendence required learning to go beyond the discussion forum and be situated within the participants’ broader communities of practice. Overall, this longitudinal study highlights how social learning facilitated through deliberation presents opportunities to identify shared values and spark value shifts across stakeholder groups, thus incorporating diverse viewpoints into decision-making about global environmental change.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2022-08-15
    Description: Ocean acidification (OA) has been identified as one of the major climate-change related threats, mainly due to its significant impacts on marine calcifiers. Among those are the calcareous green algae of the genus Halimeda that are known to be major carbonate producers in shallow tropical and subtropical seas. Hence, any negative OA impacts on these organisms may translate into significant declines in regional and global carbonate production. In this study, we compiled the available information regarding Halimeda spp. responses to OA (experimental, in situ), with special focus on the calcification responses, one of the most studied response parameters in this group. Furthermore, among the compiled studies (n = 31), we selected those reporting quantitative data of OA effects on algal net calcification in an attempt to identify potential general patterns of species- and/or regional-specific OA responses and hence, impacts on carbonate production. While obtaining general patterns was largely hampered by the often scarce number of studies on individual species and/or regions, the currently available information indicates species-specific susceptibility to OA, seemingly unrelated to evolutionary lineages (and associated differences in morphology), that is often accompanied by differences in a species� response across different regions. Thus, for projections of future declines in Halimeda-associated carbonate production, we used available regional reports of species-specific carbonate production in conjunction with experimental OA responses for the respective species and regions. Based on the available information, declines can be expected worldwide, though some regions harbouring more sensitive species might be more impacted than others.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2022-03-09
    Description: Strike-slip faults are classically associated with pull-apart basins where continental crust is thinned between two laterally offset fault segments. We propose a subsidence mechanism to explain the formation of a new type of basin where no substantial segment offset or syn-strike-slip thinning is observed. Such “flexural strike-slip basins” form due to a sediment load creating accommodation space by bending the lithosphere. We use a two-way coupling between the geodynamic code ASPECT and surface-processes code FastScape to show that flexural strike-slip basins emerge if sediment is deposited on thin lithosphere close to a strike-slip fault. These conditions were met at the Andaman Basin Central fault (Andaman Sea, Indian Ocean), where seismic reflection data provide evidence of a laterally extensive flexural basin with a depocenter located parallel to the strike-slip fault trace.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2022-03-09
    Description: Carbonatites host some unique ore deposits, especially REE, and fractional crystallization might be a potentially powerful mechanism for control enrichment of carbonatitic magmas by these metals to economically significant levels. At present, data on distribution coefficients of REE during fractional crystallization of carbonatitic melts at volcanic conditions are extremely scarce. Here we present an experimental study of REE partitioning between carbonatitic melts and calcite in the system CaCO3-Na2CO3 with varying amounts of P2O5, F, Cl, SiO2, SO3 at 650–900 °C and 100 MPa using cold-seal pressure vessels and LA-ICP-MS. The presence of phosphorus in the system generally increases the distribution coefficients but its effect decreases with increasing concentration. The temperature factor is high: at 770–900 °C DREE ≥ 1, while at lower temperatures DREE become below unity. Silicon also promotes the fractionation of REE into calcite, while sulfur contributes to retention of REE in the melt. Our results imply that calcite may impose significant control upon REE fractionation at the early stages of crystallization of carbonatitic magmas and might be a closest proxy for monitoring the REE content in initial melt.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    In:  Earth and Planetary Science Letters
    Publication Date: 2022-03-09
    Description: The birth and expansion of continental plateaus exert a strong control on our planet's climate and the distribution and evolution of its biodiversity. It has been proposed that the Tibetan Plateau has been steadily growing by southward expansion. Here we demonstrate that the shape of the southeastern margin of the plateau has remained unchanged for the last 10 Myr despite vast amounts of exhumation. Our finding is based on a new, high-resolution thermochronological dataset from the deep gorges of the Salween and Mekong rivers, which we interpret using a physics-based model combined with an optimization method. We show that our scenario also agrees with a wide range of other, independent geological and geophysical data. This finding demonstrates that plateau margins can reach large-scale topographic steady-state between outward growth and surface erosion, which has important implications for our understanding of the evolution of Earth's climate and biodiversity in the recent geological past.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2022-03-09
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2022-03-09
    Description: Sulfidated nanoscale zerovalent iron (S-nZVI) exhibits low anoxic oxidation and high reactivity towards many chlorinated hydrocarbons (CHCs). However, nothing is known about S-nZVI reactivity once exposed to complex CHC mixtures, a common feature of CHC plumes in the environment. Here, three S-nZVI materials with varying iron sulfide (mackinawite, FeSm) shell thickness and crystallinity were exposed to groundwater containing a complex mixture of chlorinated ethenes, ethanes, and methanes. CHC removal trends yielded pseudo-first order rate constants (kobs) that decreased in the order: trichloroethene 〉 trans-dicloroethene 〉 1,1-dichlorethene 〉 trichloromethane 〉 tetrachloroethene 〉 cis-dichloroethene 〉 1,1,2-trichloroethane, for all S-nZVI materials. These kobs trends showed no correlation with CHC reduction potentials based on their lowest unoccupied molecular orbital energies (ELUMO) but absolute values were affected by the FeSm shell thickness and crystallinity. In comparison, nZVI reacted with the same CHCs groundwater, yielded kobs that linearly correlated with CHC ELUMO values (R2 = 0.94) and that were lower than S-nZVI kobs. The CHC selectivity induced by sulfidation treatment is explained by FeSm surface sites having specific binding affinities towards some CHCs, while others require access to the metallic iron core. These new insights help advance S-nZVI synthesis strategies to fit specific CHC treatment scenarios.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2022-03-09
    Description: The LArge-scale Reservoir Simulator (LARS) has been previously developed to study hydrate dissociation in hydrate-bearing systems under in-situ conditions. In the present study, a numerical framework of equations of state describing hydrate formation at equilibrium conditions has been elaborated and integrated with a numerical flow and transport simulator to investigate a multi-stage hydrate formation experiment undertaken in LARS. A verification of the implemented modeling framework has been carried out by benchmarking it against another established numerical code. Three-dimensional (3D) model calibration has been performed based on laboratory data available from temperature sensors, fluid sampling, and electrical resistivity tomography. The simulation results demonstrate that temperature profiles, spatial hydrate distribution, and bulk hydrate saturation are consistent with the observations. Furthermore, our numerical framework can be applied to calibrate geophysical measurements, optimize post-processing workflows for monitoring data, improve the design of hydrate formation experiments, and investigate the temporal evolution of sub-permafrost methane hydrate reservoirs.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2022-03-09
    Description: Wuhan (China) is facing severe consolidation subsidence of soft soil and karst collapse hazards. To quantitatively explore the extent and causes of land subsidence in Wuhan, we performed multitemporal interferometry (MTI) analysis using synthetic aperture radar (SAR) data from the TerraSAR-X satellite from 2013 to 2017 and the Sentinel-1A satellite from 2015 to 2017. MTI results reveal four major subsidence zones in Wuhan, namely, Hankou (exceeding −6 cm/yr), Xudong-Qingshan (−3 cm/yr), Baishazhou-Jiangdi (−3 cm/yr), and Jianshe-Yangluo (−2 cm/yr). Accuracy assessment using 106 levelling benchmarks and cross-validation between the two InSAR-based results indicate an overall root-mean-square error (RMSE) of 2.5 and 3.1 mm/yr, respectively. Geophysical and geological analyses suggest that among the four major subsiding zones, Hankou, Xudong-Qingshan, and Jianshe-Yangluo are located in non-karstic soft soil areas, where shallow groundwater (〈 30 m) declines driven by engineering dewatering and industrial water depletion contribute directly to soft soil compaction. Subsidence in the Baishazhou-Jiangdi zone develops in the karst terrain with abundant underground caves and fissures, which are major natural factors for gradual subsidence and karst collapse. Spatial variation analysis of the geological conditions indicates that the stage of karst development plays the most important role in influencing kart subsidence, followed by municipal construction, proximity to major rivers, and overlying soil structure. Moreover, land subsidence in this zone is affected more via coupling effects from multiple factors. Risk zoning analysis integrating subsidence horizontal gradient, InSAR deformation rates, and municipal construction density show that the high-risk areas in Wuhan are mainly distributed in the Tianxingzhou and Baishazhou-Jiangdi zone, and generally spread along the metro lines.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2022-03-09
    Description: Climate change and rapid expansion of urban areas are expected to increase pluvial flood hazard and risk in the near future, and particularly so in large developed areas and cities. Therefore, large-scale and high-resolution pluvial flood hazard mapping is required to identify hotspots where mitigation measures may be applied to reduce flood risk. Depressions or low points in urban areas where runoff volumes can be stored are prone to pluvial flooding. The standard approach based on estimating synthetic design hyetographs assumes, in a given depression, that the T-year design storm generates the T-year pluvial flood. In addition, urban areas usually include several depressions even linked or nested that would require distinct design hyetographs instead of using a unique synthetic design storm. In this paper, a stochastic methodology is proposed to address the limitations of this standard approach, developing large-scale ∼ 2 m-resolution pluvial flood hazard maps in urban areas with multiple depressions. The authors present an application of the proposed approach to the city of Pamplona in Spain (68.26 km2). The Safer_RAIN fast-processing algorithm based on digital elevation models (DEMs) is compared with the IBER 2D hydrodynamic model in four real storms by using 10-min precipitation fields. Precipitation recorded at rainfall-gauging stations was merged with continuous fields obtained from a meteorological radar station. Given the hydrostatic limitations of Safer_RAIN, the benchmarking results are adequate in terms of water depths in depressions. A long set of 10 000 synthetic storms that maintain the statistical properties of observations in Pamplona is generated. Safer_RAIN is used to simulate runoff response, and filling and spilling processes, in depressions for the 10 000 synthetic storms, obtaining the probability distribution of water depths in each cell. Maps of pluvial flood hazards are developed in the Pamplona metropolitan area for 10 return periods in the range from two to 500 years from such pixel-based series of simulated water depths. Bivariate return-period curves are estimated in a set of cells, showing that several storms can generate a given T-year pluvial flood with an increasing precipitation with storm duration that depends on the draining catchment soil characteristics. The methodology proposed is useful to develop maps of pluvial flood hazards in large multi-depression urban areas in reasonable computation times, identifying the main pluvial flood hotspots.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2022-04-08
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2022-04-08
    Description: The real-time Earth orientation parameters (EOP) estimation is needed for many applications, including precise tracking and navigation of interplanetary spacecraft, climate forecasting, and disaster prevention. However, the complexity and time-consuming data processing always lead to time delays. Accordingly, several methods were developed and applied for the EOP prediction. However, the accuracy of EOP prediction is still not satisfactory even for prediction of just a few days in the future. Therefore, new methods or a combination of the existing approaches can be investigated to improve the predicted EOP. To assess the various EOP prediction capabilities, the international Earth rotation and reference systems service (IERS) established the working group on the 2nd Earth Orientation Parameters Prediction Comparison Campaign (2nd EOP PCC). Our EOP prediction team provides the full set of EOP predictions weekly for one year ahead. In this campaign, we used the SSA+Copula method and the empirical free core nutation (FCN) model (named B16) for Earth rotation parameters and celestial pole offsets (CPO) prediction, respectively. Additionally, we investigated new prediction techniques and different input data set; as an example, the Convolutional Neural Networks (CNN) is introduced to model and predict the short-term EOP. Our preliminary results illustrate an improvement in EOP prediction compared to the current EOP prediction methods, especially on CPO.
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2022-04-08
    Description: Despite its high seismogenic potential, the details of the seismogenic processes of Zagros Simply Folded Belt (SFB) remains debated. Three large earthquakes (Mw 7.3, 5.9, and 6.3) struck in the Lurestan arc of the Zagros SFB in 2017 and 2018. The sequence was recorded by seismic stations at regional, and teleseismic distances. Coseismic surface displacements, measured by Sentinel-1A/B satellites, provide additional data and a unique opportunity to study these earthquakes in detail. Here, we complement previous studies of the coseismic slip distribution of the 12 November 2017 Mw 7.3 Ezgeleh earthquake by a detailed analysis of its aftershocks, and we analyzed the rupture process of the two interrelated earthquakes (25 August 2018 Mw 5.9 Tazehabad and the 25 November 2018 Mw 6.3 Sarpol-e Zahab earthquakes). We model the surface displacements obtained from Interferometric Synthetic Aperture Radar (InSAR) measurements and seismic records. We conduct non-linear probabilistic optimizations based on joint InSAR and seismic data to obtain finite-fault rupture of these earthquakes. The Lurestan arc earthquakes were followed by a sustained aftershock activity, with 133 aftershocks exceeding Mn 4.0 until December 30, 2019. We rely on the permanent seismic networks of Iran and Iraq to relocate ∼700 Mn 3 + events and estimate moment tensor solutions for 85 aftershocks down to Mw 4.0. The 2017 Ezgeleh earthquake has been considered to activate a low-angle (∼17°) dextral-thrust fault at the depth of 10–20 km. However, most of its aftershocks have shallow centroid depths (8–12 km). The joint interpretation of finite source models, moment tensor, and hypocentral location indicate that the 2018 Tazehabad and Sarpol-e Zahab earthquakes ruptured different strike-slip structures, providing evidence for the activation of the sinistral and dextral strike-slip faults, respectively. The deformation in the Lurestan arc is seismically accommodated by a complex fault system involving both thrust and strike-slip faults. Knowledge about the deformation characteristics is important for the understanding of crustal shortening, faulting, and hazard and risk assessment in this region.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2022-04-08
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2022-04-08
    Description: Elliptical sulfate-rich features, stained red by the presence of iron oxides, are set within permafrost and carbonate rock at Borup Fiord Pass in the Canadian High Arctic. These features, which vary in diameter from ∼0.5 to 3 m, exhibit the co-localization of sulfur (S) and iron (Fe) minerals, with S and Fe both preserved in multiple oxidation states. Through application of x-ray diffraction (XRD) and Raman microspectroscopy, we find that these features appear to encapsulate central cores with abundant pyrite while S0, gypsum, and iron-bearing secondary minerals such as jarosite, goethite, and hematite have formed from oxidative weathering of the pyrite. These features appear similar to terrestrial gossans, mineral features representative of weathered sulfide ores in the near-surface. We use Raman microspectroscopy and scanning transmission x-ray microscopy (STXM) to show that organic carbon is associated with the minerals within these features. The origin of this carbon remains enigmatic; however, we consider the possibility that this carbon, along with etching of the pyrite grains and accumulation of encrusted filaments detected in the features, may be indicative of preserved biological activity during alteration of the pyrite. We also consider how such geological sulfide emplacements and their weathered surface expressions may provide a target for future surface and remote sensing studies of Mars and in the search for extraterrestrial life.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2022-04-08
    Description: The Pan-Eurasian Experiment (PEEX) Science Plan, released in 2015, addressed a need for a holistic system understanding and outlined the most urgent research needs for the rapidly changing Arctic-boreal region. Air quality in China, together with the long-range transport of atmospheric pollutants, was also indicated as one of the most crucial topics of the research agenda. These two geographical regions, the northern Eurasian Arctic-boreal region and China, especially the megacities in China, were identified as a “PEEX region”. It is also important to recognize that the PEEX geographical region is an area where science-based policy actions would have significant impacts on the global climate. This paper summarizes results obtained during the last 5 years in the northern Eurasian region, together with recent observations of the air quality in the urban environments in China, in the context of the PEEX programme. The main regions of interest are the Russian Arctic, northern Eurasian boreal forests (Siberia) and peatlands, and the megacities in China. We frame our analysis against research themes introduced in the PEEX Science Plan in 2015. We summarize recent progress towards an enhanced holistic understanding of the land–atmosphere–ocean systems feedbacks. We conclude that although the scientific knowledge in these regions has increased, the new results are in many cases insufficient, and there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures, especially the lack of coordinated, continuous and comprehensive in situ observations of the study region as well as integrative data analyses, hindering a comprehensive system analysis. The fast-changing environment and ecosystem changes driven by climate change, socio-economic activities like the China Silk Road Initiative, and the global trends like urbanization further complicate such analyses. We recognize new topics with an increasing importance in the near future, especially “the enhancing biological sequestration capacity of greenhouse gases into forests and soils to mitigate climate change” and the “socio-economic development to tackle air quality issues”.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2022-03-24
    Description: Glacial isostatic adjustment is largely governed by the rheological properties of the Earth's mantle. Large mass redistributions in the ocean–cryosphere system and the subsequent response of the viscoelastic Earth have led to dramatic sea level changes in the past. This process is ongoing, and in order to understand and predict current and future sea level changes, the knowledge of mantle properties such as viscosity is essential. In this study, we present a method to obtain estimates of mantle viscosities by the assimilation of relative sea level rates of change into a viscoelastic model of the lithosphere and mantle. We set up a particle filter with probabilistic resampling. In an identical twin experiment, we show that mantle viscosities can be recovered in a glacial isostatic adjustment model of a simple three-layer Earth structure consisting of an elastic lithosphere and two mantle layers of different viscosity. We investigate the ensemble behaviour on different parameters in the following three set-ups: (1) global observations data set since last glacial maximum with different ensemble initialisations and observation uncertainties, (2) regional observations from Fennoscandia or Laurentide/Greenland only, and (3) limiting the observation period to 10 ka until the present. We show that the recovery is successful in all cases if the target parameter values are properly sampled by the initial ensemble probability distribution. This even includes cases in which the target viscosity values are located far in the tail of the initial ensemble probability distribution. Experiments show that the method is successful if enough near-field observations are available. This makes it work best for a period after substantial deglaciation until the present when the number of sea level indicators is relatively high.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2022-03-21
    Description: Mantle metasomatism is an important process in subduction zones in which fluids from the dehydrating oceanic slab interact with the overlying upper mantle resulting in a chemical alteration of the mantle. Consequently, this fluid-rock interaction may influence the mantle rock's physical properties such as the deformation behavior. In order to study element redistribution during mantle metasomatism in the laboratory, we used the simplified model reaction olivine + quartz = orthopyroxene, where olivine acts as representative for the upper mantle and quartz as proxy for the metasomatizing agent. We conducted piston-cylinder experiments at 1.5 GPa and 950 to 1400 °C, lasting between 48 and 288 h, on samples containing a mixture of quartz and one set of synthesized forsterite samples doped with either Co, Ni, Mn, or Zn. Additionally, we tested the influence of either nominally anhydrous or hydrous experimental conditions on the chemical distribution of the respective dopant element by using either crushable alumina or natural CaF2 as pressure medium. Results of the chemical analyses of the recovered samples show dopant specific partitioning between doped forsterite and orthopyroxene independent of the confining pressure medium; except for the runs in which Ni-doped forsterite samples were used. The observed Ni- and Co-enrichment in forsterite samples may be used to identify mantle rocks that underwent mantle metasomatism in nature.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2022-03-29
    Description: To mark the 20th anniversary of Natural Hazards and Earth System Sciences (NHESS), an interdisciplinary and international journal dedicated to the public discussion and open-access publication of high-quality studies and original research on natural hazards and their consequences, we highlight 11 key publications covering major subject areas of NHESS that stood out within the past 20 years. The papers cover all the topics contemplated in the European Geosciences Union (EGU) Division on Natural Hazards including dissemination, education, outreach and teaching. The selected articles thus represent excellent scientific contributions in the major areas of natural hazards and risks and helped NHESS to become an exceptionally strong journal representing interdisciplinary areas of natural hazards and risks. At its 20th anniversary, we are proud that NHESS is not only used by scientists to disseminate research results and novel ideas but also by practitioners and decision-makers to present effective solutions and strategies for sustainable disaster risk reduction.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2022-03-29
    Description: With the completion of Chinese BeiDou Navigation Satellite System (BDS), the world has begun to enjoy the Positioning, Navigation, and Timing (PNT) services of four Global Navigation Satellite Systems (GNSS). In order to improve the GNSS performance and expand its applications, Low Earth Orbit (LEO) Enhanced Global Navigation Satellite System (LeGNSS) is being vigorously advocated. Combined with high-, medium-, and low- earth orbit satellites, it can improve GNSS performance in terms of orbit determination, Precise Point Positioning (PPP) convergence time, etc. This paper comprehensively reviews the current status of LeGNSS, focusing on analyzing its advantages and challenges for precise orbit and clock determination, PPP convergence, earth rotation parameter estimation, and global ionosphere modeling. Thanks to the fast geometric change brought by LEO satellites, LeGNSS is expected to fundamentally solve the problem of the long convergence time of PPP without any augmentation. The convergence time can be shortened within 1 minute if appropriate LEO constellations are deployed. However, there are still some issues to overcome, such as the optimization of LEO constellation as well as the real time LEO precise orbit and clock determination.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2022-03-27
    Description: Raw, SEGY and other supplementary data are presented from the seismic refraction / wide-angle reflection profile, TTZ-South, in Poland and Ukraine. The purpose of this 550 km long seismic profile was to reveal the lithospheric structure along the Teisseyre-Tornquist Zone (TTZ), a major geophysical boundary in Europe.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2022-03-30
    Language: English
    Type: info:eu-repo/semantics/other
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2022-03-30
    Language: English
    Type: info:eu-repo/semantics/lecture
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2022-04-13
    Description: The Pacific Northwest (PNW) has substantial earthquake risk, both due to the offshore Cascadia megathrust fault but also other fault systems that produce earthquakes under the region's population centers. Forecasts of aftershocks following large earthquakes are thus highly desirable and require statistical models of a catalog of the PNW’s past earthquakes and aftershock sequences. This is complicated by the fact that the PNW contains multiple tectonic regimes hypothesized to have different aftershock dynamics as well as two types of earthquake clustering (aftershock sequences and swarms). The Epidemic-Type Aftershock Sequence (ETAS) model is a top-performing spatiotemporal point process model which describes the dynamics of earthquakes and aftershocks in a seismic region using a set of parameters. Typically, maximum likelihood estimation is used to fit ETAS to an earthquake catalog; however, the ETAS likelihood suffers from flatness near its optima, parameter correlation and numerical instability, making likelihood-based estimates less reliable. We present a Bayesian procedure for ETAS estimation, such that parameter estimates and uncertainty can be robustly quantified, even for small and complex catalogs like the PNW. The procedure is conditional on knowing which earthquakes triggered which aftershocks; this latent structure and the ETAS parameters are estimated iteratively. The procedure uses a Gibbs sampler to conditionally estimate the posterior distributions of each part of the model. We simulate several synthetic catalogs and test the modelling procedure, showing well-mixed posterior distributions centered on true parameter values. We also use the procedure to model the continental PNW, using a new catalog formed by algorthmically combining US and Canadian data sources and then, identifying and removing earthquake swarms. While MLEs are unstable and depend on both the optimization procedure and its initial values, Bayesian estimates are insensitive to these choices. Bayesian estimates also fit the catalog better than do MLEs. We use the Bayesian method to quantify the uncertainty in ETAS estimates when including swarms in the model or modelling across different tectonic regimes, as well as from catalog measurement error. Seismicity rate estimates and the earthquake forecasts they yield vary spatially and are usually represented as heat maps. While the visualization literature suggests that displaying forecast uncertainty improves understanding in users of forecast maps, research on uncertainty visualization (UV) is missing from earthquake science. In a pre-registered online experiment, we test the effectiveness of three UV techniques for displaying uncertainty in aftershock forecasts. Participants completed two map-reading tasks and a comparative judgment task, which demonstrated how successful a visualization was in reaching two key communication goals: indicating where many aftershocks and no aftershocks are likely (sure bets) and where the forecast is low but the uncertainty is high enough to imply potential risk (surprises). All visualizations performed equally well in the goal of communicating sure bet situations. But the visualization mapping the lower and upper bounds of an uncertainty interval was substantially better than the other map designs at communicating potential surprises. We discuss the implications of these experimental results for the communication of uncertainty in aftershock forecast maps.
    Language: English
    Type: info:eu-repo/semantics/doctoralThesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2022-02-16
    Description: Carbonate has often been identified in aqueous carbonic inclusions in spodumene-bearing and other pegmatites, but its origin remains unclear. Here, the conditions at which carbonate and hydrogen carbonate can be generated from spodumene, CO2 and H2O, were studied using a hydrothermal diamond-anvil cell (HDAC) and Raman spectroscopy. In all experiments, spodumene persisted in aqueous carbonic solution up to the maximum temperature (600 to 800 °C). Heating of hydrogen carbonate/oxalate solutions produced CO2- and HCO−3-rich peralkaline fluids, which resulted in strong corrosion of spodumene (and polylithionite-trilithionite) and, in one run, formation of zabuyelite [Li2(CO3)] crystals at low temperatures. The experiments indicate that the reaction of spodumene with CO2 and H2O requires a peralkaline fluid to proceed rapidly. In addition, they show that spodumene crystallizes upon the heating of quartz, muscovite, and aqueous lithium carbonate solution. We conclude that if the aqueous fluid was rich in alkali hydrogen carbonate, zabuyelite in fluid inclusions in pegmatites can form both via a subsolidus reaction of CO2-bearing fluid inclusion with the spodumene host or by trapping a peralkaline fluid early in the evolution of simple or complex pegmatites. The results of our experimental study strengthen the conclusion that, although counterintuitive, hydrogen carbonate-rich peralkaline fluids may be involved in the evolution of peraluminous granitic pegmatites, in which peralkaline minerals are normally absent or very rare.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2022-02-16
    Description: Knowledge of groundwater flow is of high relevance for groundwater management and the planning of different subsurface utilizations such as deep geothermal facilities. While numerical models can help to understand the hydrodynamics of the targeted reservoir, their predictive capabilities are limited by the assumptions made in their set up. Among others, the choice of appropriate hydraulic boundary conditions, adopted to represent the regional to local flow dynamics in the simulation run, is of crucial importance for the final modelling result. In this publication we present the hydrogeological models to obtain results to quantify how and to which degree different upper hydraulic boundary conditions and vertical cross boundary fluid movement influence the calculated deep fluid conditions Therefore, we take the central Upper Rhine Graben area as a natural laboratory. The presented three models are set up with different sets of boundary conditions. The Reference Model uses the topography as upper hydraulic pressure surface of 0 kPa. In model S1, a subdued replica of the topography, which was built on the base of hydraulic head measurements is applied as the upper hydraulic boundary condition and in model S2 vertical cross boundary flow is implemented. Based on our results, we illustrate in the landing paper that for the Upper Rhine Graben specific characteristics of the flow field are robust and insensitive to the choice of imposed hydraulic boundary conditions, while specific local characteristics are more sensitive. Accordingly, these robust features characterizing the first order groundwater flow dynamics in the Upper Rhine Graben include: (i) a regional groundwater flow component descending from the graben shoulders to rise at its centre; (ii) infiltration of fluids across the graben shoulders, which locally rise along the main border faults; (iii) the presence of heterogeneous hydraulic potentials at the rift shoulders. The configuration of the adopted boundary conditions influence primarily calculated flow velocities and the absolute position of the upflow axis within the graben sediments. In addition, the choice of upper hydraulic boundary conditions exerts a direct control on the evolving local flow dynamics, with the degree of influence gradually decreasing with increasing depth. With respect to regional flow modelling of basin hosted, deep water resources, the main conclusions derived from this study are: (i) the often considered water table as an exact replica of the model topography (Reference Model) likely introduces a source of error in the simulations in regional hydraulic modelling approaches. Here, we show that these errors can be minimized by making use of a water table as upper boundary condition derived from available hydraulic head measurements (model S1). If the study area is part of a supra-regional flow system - like the central Upper Rhine Graben is part of the whole Upper Rhine Graben - the in- and outflow across vertical boundaries need to be considered (model S2).
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2022-02-16
    Description: The Younger Dryas (YD) is a roughly 1,100-year cold period marking the end of the last glaciation. Climate modelling for northern Europe indicates high summer temperatures and strong continentality. In eastern Europe, the scale of temperature variation and its influence on ecosystems is weakly recognised. Here, we present a multi-proxy reconstruction of YD conditions from Lake Gościąż (central Poland). The decadal-resolution analysis of its annually varved sediments indicates an initial decrease in Chironomidae-inferred mean July air temperature followed by steady warming. The pollen-inferred winter-to-summer temperature amplitude and annual precipitation is highest at the Allerød/YD transition and the early YD (ca. 12.7–12.4 ky cal BP) and YD/Holocene (11.7–11.4 ka cal BP) transition. Temperature and precipitation were the main reasons for lake level fluctuations as reflected in the planktonic/littoral Cladocera ratio. The lake’s diatom-inferred total phosphorus decreased with increasing summer temperature from about mid YD. Windy conditions in the early YD until ∼12.3 ka cal BP caused water mixing and a short-lived/temporary increase in nutrient availability for phytoplankton. The Chironomidae-inferred summer temperature and pollen inferred summer temperature, winter temperature and annual precipitation herein are one of only a few in eastern Europe conducted with such high resolution.
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2022-02-16
    Description: Fluid inclusions in pegmatite minerals were studied using Raman spectroscopy to determine the carbon species. Carbon dioxide is very abundant in the aqueous liquid and vapor phases. Occasionally, CH4 was found in the vapor. In the aqueous liquid, HCO−3 was detected in fluid inclusions in tantalite-(Mn) from the Morrua Mine and in late-stage quartz from the Muiâne pegmatite and the Naipa Mine, all in the Alto Ligonha District, Mozambique. Moreover, we observed a carbonate (calcite group) in fluid inclusions in garnet from the Naipa Mine and in beryl from the Morrua Mine, both in the Alto Ligonha District, Mozambique, and a calcite-group carbonate and whewellite [CaC2O4∙H2O] in fluid inclusions in topaz from Khoroshiv, Ukraine. The occurrence of oxalate is interpreted to be due to a reaction of some form of carbon (possibly CO or bitumen) with a peralkaline fluid. Our results support the hypothesis that, although counterintuitive, hydrogen carbonate-rich peralkaline fluids may locally be involved in the evolution of peraluminous granitic pegmatites, in which peralkaline minerals are normally absent or very rare.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2022-02-16
    Description: One of the most fundamental questions in ecology is how many species inhabit the Earth. However, due to massive logistical and financial challenges and taxonomic difficulties connected to the species concept definition, the global numbers of species, including those of important and well-studied life forms such as trees, still remain largely unknown. Here, based on global ground-sourced data, we estimate the total tree species richness at global, continental, and biome levels. Our results indicate that there are ∼73,000 tree species globally, among which ∼9,000 tree species are yet to be discovered. Roughly 40% of undiscovered tree species are in South America. Moreover, almost one-third of all tree species to be discovered may be rare, with very low populations and limited spatial distribution (likely in remote tropical lowlands and mountains). These findings highlight the vulnerability of global forest biodiversity to anthropogenic changes in land use and climate, which disproportionately threaten rare species and thus, global tree richness.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    In:  Protokoll über das 29. Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung: virtuell, 29. September - 1. Oktober 2021
    Publication Date: 2022-02-22
    Language: German
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    In:  Protokoll über das 29. Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung: virtuell, 29. September - 1. Oktober 2021
    Publication Date: 2022-02-22
    Description: We report a new improvement in self-organized maps for geological interpretation of geophysical data. By using a multi-geophysical dataset recorded in the mining area of Thuringia, Germany, we show the results of replacing the typical feature analysis by a principal component analysis. By performing a transformation of the dataset according to a few of the principal components, we obtain a more detailed representation of the local geology than previous works. Results also show a significant improvement in processing time, while also minimizing influence of user´s interpretation.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    In:  Protokoll über das 29. Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung: virtuell, 29. September - 1. Oktober 2021
    Publication Date: 2022-02-22
    Description: The Songliao Block is located in the eastern part of the Central Asian Orogenic Belt. Its creation and evolution are believed to be related to the closure of the Paleo-Asian and Mongol-Okhotsk oceans, and to the subduction of the Paleo-Pacific Ocean. The deep seismic reflection profiles showed that there are sloping mantle reflections below the Songliao Block, which are suspected to be the result of the convergence of three tectonic domains. However, it is still not clear the current structural form of the Songliao Block is caused by the direct action or not of the tectonic systems. This work used 138 broadband magnetotelluric stations to obtain a three-dimensional electrical structural model of the northern Songliao Block. The results showed there are orthogonal network fault systems, faulted basins, igneous rocks. And the Lindian fault depression is the center of the asthenospheric upwelling, the shallowest up to 45 km. Combined with evidence from seismic studies, we proposed that the superposition of tectonic systems may have produced weak tectonic zones. These zones provided channels for the later upward movement of fluids and melt, likely due to hydrous upwellings caused by the subduction of the Paleo-Pacific system.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    In:  Protokoll über das 29. Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung: virtuell, 29. September - 1. Oktober 2021
    Publication Date: 2022-02-22
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    In:  Protokoll über das 29. Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung: virtuell, 29. September - 1. Oktober 2021
    Publication Date: 2022-02-24
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    In:  Protokoll über das 29. Schmucker-Weidelt-Kolloquium für Elektromagnetische Tiefenforschung: virtuell, 29. September - 1. Oktober 2021
    Publication Date: 2022-02-24
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2022-04-11
    Description: The evolution of chemical bonding in ferropericlase, (Mg,Fe)O, with pressure may affect the physical and chemical properties of the Earth’s lower mantle. Here, we report highpressure optical absorption spectra of single-crystalline ferropericlase ((Mg0.87Fe0.13)O) up to 135 GPa. Combined with a re-evaluation of published partial fluorescence yield X-ray absorption spectroscopy data, we show that the covalency of the Fe−O bond increases with pressure, but the iron spin transition at 57−76.5 GPa reverses this trend. The qualitative crossover in chemical bonding suggests that the spin-pairing transition weakens the Fe−O bond in ferropericlase. We find, that the spin transition in ferropericlase is caused by both the increase of the ligand field-splitting energy and the decrease in the spin-pairing energy of high-spin Fe2+.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2022-04-11
    Description: he competition between the impact of inherited weaknesses and plate kinematics determines the location and style of deformation during rifting, yet the relative impacts of these ‘internal’ and ‘external’ factors remain poorly understood, especially in 3D. In this study, we used brittle-viscous analogue models to assess how multiphase rifting, that is changes in plate divergence rate or direction, and the presence and orientation of weaknesses in the competent mantle and crust, influences rift evolution. We find that the combined reactivation of mantle and crustal weaknesses without any kinematic changes already creates complex rift structures. Divergence rates affect the strength of the weak lower crustal layer and hence the degree of mantle-crustal coupling; slow rifting decreases coupling, so that crustal weaknesses can dominate deformation localisation and surface structures, whereas fast rifting increases coupling and deformation related to mantle weaknesses can have a dominant surface expression. Through a change from slow to fast rifting mantle-related deformation can overprint structures that previously formed along (differently oriented) crustal weaknesses. Conversely, a change from fast to slow rifting may shift deformation from mantle-controlled towards crust-controlled. When changing divergence directions, structures from the first rifting phase may control where subsequent deformation occurs, but only when they are sufficiently well developed. We furthermore place our results in a larger framework of brittle-viscous rift modelling results from previous experimental studies, showing the importance of general lithospheric layering, divergence rate, the type of deformation in the mantle, and finally upper crustal structural inheritance. The interaction between these parameters can produce a variety of deformation styles that may, however, lead to comparable end products. Therefore, careful investigation of the distribution of strain localisation, and to an equal extent of basin depocenter locations over time is required to properly determine the evolution of complex rift systems, providing an incentive to revisit various natural examples.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2022-04-11
    Description: The Kiaka orogenic gold deposit (Burkina Faso), located in the Paleoproterozoic domain of the West African Craton, is characterized by a two-stage gold mineralization hosted in volcano-sedimentary metamorphic rocks that was formed during the Eoeburnean (2.20–2.13 Ga) and Eburnean (2.13–2.05 Ga) orogenic cycles. These two stages include an early disseminated low-grade gold mineralization and a late vein-hosted high-grade gold mineralization. Paragenetic studies indicate that the first gold stage was coeval with the deposition of hydrothermal tourmaline. The aim of this paper is twofold: (i) to determine the processes responsible for deposition of the economic disseminated gold mineralization and (ii) to identify the source of the mineralizing fluids. For this purpose, we performed an in situ study on tourmaline by combining electron probe microanalysis and secondary ion mass spectrometry measurements of boron isotopes. Hydrothermal tourmaline hosted in metamafic volcanic rocks and metagreywackes has a dravite composition but shows different δ11B values falling within the two intervals of − 25.1 to − 22.0‰ and − 19.6 to − 15.1‰, respectively. Our results suggest that tourmaline formed from a distal, high-temperature (ca. 400 °C), reduced, and low-salinity hydrothermal fluid that interacted with the local host rocks. Based on the modeling of tourmaline–fluid boron isotope fractionation, we propose a metamorphic fluid origin derived from devolatilization of deeply buried muscovite schists during the regional prograde to peak metamorphism prior ca. 2.13 Ga. This metamorphic fluid–rock interaction model may possibly extend to other orogenic gold deposits in the West African Craton.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    In:  GMIT - Geowissenschaftliche Mitteilungen
    Publication Date: 2022-04-11
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    In:  Journal of Geophysical Research: Solid Earth
    Publication Date: 2022-04-11
    Description: Fluvial deposits offer Earth’s best-preserved geomorphic record of past climate change over geological timescales. Quantitatively extracting this information remains challenging in part due to the complexity of erosion, sediment transport and deposition processes and how each of them responds to climate. Furthermore, sedimentary basins have the potential to temporarily store sediments, and rivers subsequently rework those sediments. This may introduce time lags into sedimentary signals and obscure any direct correlation with climate forcing. Here, using a numerical model that combines all three processes—and a new analytical solution—we show that the thickness of fluvial deposits at the outlet of a mountain river can be linked to the amplitude and period of rainfall oscillations but is modulated by the mountain uplift rate. For typical uplift rates of a few mm/yr, climate oscillations at Milankovitch periods lead to alluvial sediment thickness of tens of meters as observed in nature. We also explain the time lag of the order of 20–25% of the forcing period that is commonly observed between the timing of maximum rainfall and erosion. By comparing to field datasets, our predictions for the thickness and time lag of fluvial deposits are broadly consistent with observations despite the simplicity of our modeling approach. These findings provide a new theoretical framework for quantitatively extracting information on past rainfall variations from fluvial deposits.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    In:  Journal of Geophysical Research: Earth Surface
    Publication Date: 2022-04-11
    Description: Physical weathering in cold, steep bedrock hillslopes occurs at rates that are thought to depend on temperature, but our ability to quantify the temperature-dependence of erosion remains limited when integrating over geomorphic timescales. Here, we present results from a 1D numerical model of in-situ cosmogenic 10Be, 14C, and 3He concentrations that evolve as a function of erosion rate, erosion style, and ground surface temperature. We used the model to explore the suitability of these nuclides for quantifying erosion rates in areas undergoing non-steady state erosion, as well as the relationship between bedrock temperature, erosion rate, and erosional stochasticity. Our results suggest that even in stochastically-eroding settings, 10Be-derived erosion rates of amalgamated samples can be used to estimate long-term erosion rates, but infrequent large events can lead to bias. The ratio of 14C to 10Be can be used to evaluate erosional stochasticity, and to determine the offset between an apparent 10Be-derived erosion rate and the long-term rate. Finally, the concentration of 3He relative to that of 10Be, and the paleothermometric interpretations derived from it, are unaffected by erosional stochasticity. These findings, discussed in the context of bedrock hillslopes in mountainous regions, indicate that the 10Be-14C-3He system in quartz offers a method to evaluate the temperature-sensitivity of bedrock erosion rates in cold, high-alpine environments.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2022-04-11
    Description: In seismic risk assessment, the sources of uncertainty associated with building exposure modelling have not received as much attention as other components related to hazard and vulnerability. Conventional practices such as assuming absolute portfolio compositions (i.e., proportions per building class) from expert-based assumptions over aggregated data crudely disregard the contribution of uncertainty of the exposure upon earthquake loss models. In this work, we introduce the concept that the degree of knowledge of a building stock can be described within a Bayesian probabilistic approach that integrates both expert-based prior distributions and data collection on individual buildings. We investigate the impact of the epistemic uncertainty in the portfolio composition on scenario-based earthquake loss models through an exposure-oriented logic tree arrangement based on synthetic building portfolios. For illustrative purposes, we consider the residential building stock of Valparaíso (Chile) subjected to seismic ground-shaking from one subduction earthquake. We have found that building class reconnaissance, either from prior assumptions by desktop studies with aggregated data (top–down approach), or from building-by-building data collection (bottom–up approach), plays a fundamental role in the statistical modelling of exposure. To model the vulnerability of such a heterogeneous building stock, we require that their associated set of structural fragility functions handle multiple spectral periods. Thereby, we also discuss the relevance and specific uncertainty upon generating either uncorrelated or spatially cross-correlated ground motion fields within this framework. We successively show how various epistemic uncertainties embedded within these probabilistic exposure models are differently propagated throughout the computed direct financial losses. This work calls for further efforts to redesign desktop exposure studies, while also highlighting the importance of exposure data collection with standardized and iterative approaches.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2022-04-11
    Description: Hydrodynamic interactions, i.e. the floodplain storage effects caused by inundations upstream on flood wave propagation, inundation areas, and flood damage downstream, are important but often ignored in large-scale flood risk assessments. Although new methods considering these effects sometimes emerge, they are often limited to a small or meso scale. In this study, we investigate the role of hydrodynamic interactions and floodplain storage on flood hazard and risk in the German part of the Rhine basin. To do so, we compare a new continuous 1D routing scheme within a flood risk model chain to the piece-wise routing scheme, which largely neglects floodplain storage. The results show that floodplain storage is significant, lowers water levels and discharges, and reduces risks by over 50%. Therefore, for accurate risk assessments, a system approach must be adopted, and floodplain storage and hydrodynamic interactions must carefully be considered.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2022-04-14
    Description: The permeability characteristics of natural fracture systems are crucial to the production potential of shale gas wells. To investigate the permeability behavior of a regional fault that is located within the Wufeng Formation, China, the gas permeability of shale samples with natural micro-fractures was measured at different confining pressures and complemented with helium pycnometry for porosity, computed micro-tomographic (µCT) imaging, and a comparison with well testing data. The cores originated from a shale gas well (HD-1) drilled at the Huayingshan anticline in the eastern Sichuan Basin. The measured Klinkenberg permeabilities are in the range between 0.059 and 5.9 mD, which roughly agrees with the permeability of the regional fault (0.96 mD) as estimated from well HD-1 productivity data. An extrapolation of the measured permeability to reservoir pressures in combination with the µCT images shows that the stress sensitivity of the permeability is closely correlated to the micro-fracture distribution and orientation. Here, the permeability of the samples in which the micro-fractures are predominantly oriented along the flow direction is the least stress sensitive. This implies that tectonic zones with a large fluid potential gradient can define favorable areas for shale gas exploitation, potentially even without requirements for hydraulic fracture treatments.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2022-04-20
    Description: Clathrate hydrates—also known as gas hydrates—are ice-like compounds consisting of gas and water molecules. They occur wherever elevated pressures and low temperatures prevail; and where enough water and hydrate-forming gas molecules are available. Therefore, natural gas hydrates occur at all active and passive continental margins, in permafrost regions, in some deep lakes, and under unfavorable circumstances, also, in pipelines. This article provides an overview of the (thermodynamic) requirements and various models for the nucleation and growth of gas hydrates and the different gas hydrate structures that may occur and which have been detected in nature. Furthermore, this study also shows the influence of the properties of the enclosed gas molecules such as size and shape on the structure and thermodynamic properties of the resulting hydrate phase. Finally, the complexity of a natural environment with regard to the various influences of sediments, microbial activity, and salinity of the pore fluid on hydrate formation is also discussed.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2022-06-24
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2022-06-24
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2022-06-24
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2022-06-24
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2022-06-24
    Language: English
    Type: info:eu-repo/semantics/other
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2022-06-24
    Description: We believe that the transdisciplinary studies on water-related multi-hazards are innovative and critical research by the water community, thus answering the call of the recent Nature Sustainability Editorial ‘Too much and not enough’1 for water science ideas that are not derivative or stagnant. This domain of water studies focuses on the specific contexts where water-related hazardous events occur simultaneously, in cascade or cumulatively with other events. Characteristic of the field is the intensive collaboration of scientists and practitioners from different disciplines working together to better understand, assess and manage water-related multi-hazards. At the recent Asia Oceania Geosciences Society–European Geosciences Union Joint Conference on New Dimensions for Natural Hazards in Asia, we discussed the statement ‘Too much and not enough’1 and here suggest three reasons why transdisciplinary collaborations have led to many new ideas and notable advancements in the field of water-related multi-hazard research in recent years.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2022-06-24
    Description: A rockfall dataset for Germany is analysed with the objective of identifying the meteorological and hydrological (pre-)conditions that change the probability for such events in central Europe. The factors investigated in the analysis are precipitation amount and intensity, freeze–thaw cycles, and subsurface moisture. As there is no suitable observational dataset for all relevant subsurface moisture types (e.g. water in rock pores and cleft water) available, simulated soil moisture and a proxy for pore water are tested as substitutes. The potential triggering factors were analysed both for the day of the event and for the days leading up to it. A logistic regression model was built, which considers individual potential triggering factors and their interactions. It is found that the most important factor influencing rockfall probability in the research area is the precipitation amount at the day of the event, but the water content of the ground on that day and freeze–thaw cycles in the days prior to the event also influence the hazard probability. Comparing simulated soil moisture and the pore-water proxy as predictors for rockfall reveals that the proxy, calculated as accumulated precipitation minus potential evaporation, performs slightly better in the statistical model. Using the statistical model, the effects of meteorological conditions on rockfall probability in German low mountain ranges can be quantified. The model suggests that precipitation is most efficient when the pore-water content of the ground is high. An increase in daily precipitation from its local 50th percentile to its 90th percentile approximately doubles the probability for a rockfall event under median pore-water conditions. When the pore-water proxy is at its 95th percentile, the same increase in precipitation leads to a 4-fold increase in rockfall probability. The occurrence of a freeze–thaw cycle in the preceding days increases the rockfall hazard by about 50 %. The most critical combination can therefore be expected in winter and at the beginning of spring after a freeze–thaw transition, which is followed by a day with high precipitation amounts and takes place in a region preconditioned by a high level of subsurface moisture.
    Type: info:eu-repo/semantics/article
    Format: application/pdf