ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-02-23
    Description: Especially in the arid areas of the Middle East and North Africa (MENA), water availability plays an important role in the expansion planning of industrial-scale solar power plants. Although power plants may account for only a very small portion of local water demand, competition for water with other sectors is expected to increase when water resources are insufficient for meeting local needs. This can lead to conflicts between different users (such as communities, farmers, tourism, businesses and utilities). Despite the increasing attention on the water-energy nexus, comprehensive studies analysing the interdependencies and potential conflicts between energy and water at the local level are absent. To examine the linkages between water resources and energy technologies at the local level, this case study was selected because Morocco is one of the countries most affected by water scarcity and, at the same time, it is also one of the most promising countries in North Africa for the development of renewable energies and offers excellent conditions for solar and wind power plants. Nevertheless, the country's electricity system is still largely based on conventional energy sources, and the country is more than 95% dependent on energy imports. To strengthen the country's energy security and reduce the financial burden associated with energy imports, Morocco is pursuing an ambitious renewable energy expansion strategy: by 2020, around 42% of the national electricity demand should be met by renewable energies. In view of Morocco's ambitious plans, it is particularly important to identify the potential conflicts and synergies resulting from the expansion of renewable energies in relation to the water sector.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: bookpart , doc-type:bookPart
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Bochum : Ruhr-Universität Bochum
    Publication Date: 2022-02-23
    Description: The energy sector today accounts for about 10% to 15% of global freshwater withdrawal. Most water in the energy sector is used for generating electricity, especially for cooling processes in thermal power plants. At the same time the demand for electricity is expected to increase significantly due to population growth and economic development in emerging and developing economies. Growing demand is also driven by electrification strategies pursued by industrialized countries to decarbonize their economies. With the global demand for electricity expected to increase significantly in the coming decades also the water demand in the power sector is expected to rise. However, due to the on-going global energy transition, the future structure of the power supply - and hence future water demand for power generation - is subject to high levels of uncertainty because the volume of water required for electricity generation varies significantly depending on both the generation technology and cooling system. In light of these challenges the objective of this analysis is to provide more systematic and robust answers in terms of the impacts of different decarbonization strategies in the electricity sector on water demand at global and regional level. The focus is on operational water use for electricity generation.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: bookpart , doc-type:bookPart
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-11-23
    Description: A clear understanding of socio-technical interdependencies and a structured vision are prerequisites for fostering and steering a transition to a fully renewables-based energy system. To facilitate such understanding, a phase model for the renewable energy transition in MENA countries has been developed and applied to the case of Palestine. It is designed to support the strategy development and governance of the energy transition and to serve as a guide for decision-makers. The transition towards renewable energies is still at a very early stage in Palestine. The long-standing political conflict between Palestine and Israel has prevented the large-scale deployment of renewable energy due to land restrictions. Palestine's political instability, its geographically fragmented territories, and its high dependence on Israel's imports are the most pressing concerns for Palestine’s electricity sector. At the operational level, particularly the transmission and distribution infrastructure need to be better interconnected, renewed and expanded to accommodate larger volumes of renewable electricity and at the same time improve efficiency. The modelled demand development shows that Palestine will most likely have to continue importing electricity even if the potential of renewable energy is fully exploited. This underlines the importance of sustainable energy partnerships for Palestine. The results of the analysis along the transition phase model towards 100% renewable energy are intended to stimulate and support the discussion on Palestine's future energy system by providing an overarching guiding vision for the energy transition and the development of appropriate policies.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: German
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...