ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-09-16
    Description: Virtually every coastal country in the world is affected by harmful algal blooms (HABs, commonly called “red tides”). This diverse array of phenomena includes blooms of toxic, microscopic algae that lead to illness and death in humans, fish, seabirds, marine mammals, and other oceanic life. There are also non-toxic HABs that cause damage to ecosystems, fisheries resources, and recreational facilities, often due to the sheer biomass of the accumulated algae. The term “HAB” also applies to non-toxic macroalgae (seaweeds), which can cause major ecological impacts such as the displacement of indigenous species, habitat alteration and oxygen depletion in bottom waters. The frequency, spatial extent, and economic impact of HABs have all expanded in recent decades, in parallel with, and sometimes a result of, the world’s increasing exploitation on the coastal zone for shelter, food, recreation, and commerce. HABs are complex oceanographic phenomena that require multidisciplinary study ranging from molecular and cell biology to large-scale field surveys, numerical modelling, and remote sensing from space. Multi-lateral international programmes and bilateral initiatives are bringing scientists together from different countries and disciplines in a concerted attack on this complex and multi-faceted issue. Our understanding of these phenomena is increasing dramatically, and with this understanding come technologies and management tools that can reduce HAB incidence and impact. More effective HAB management is sure to be one major outcome of the growing investment in the Global Ocean Observing System. HABs will always be with us, and in the next few decades at least, are likely to continue to expand in geographic extent and frequency. Nevertheless, scientifically based management should permit full exploitation of fisheries, recreational, and commercial resources, despite the recurrent and diverse threat that HABs pose. This series of lectures is dedicated to the memory of the noted Danish oceanographer and first chairman of the Commission, Dr Anton Frederick Bruun. The "Anton Bruun Memorial Lectures" were established in accordance with Resolution 19 of the Sixth Session of the IOC Assembly, in which the Commission proposed that important inter-session developments be summarized by speakers in the fields of solid earth studies, physical and chemical oceanography and meteorology, and marine biology.
    Description: Published
    Description: Refereed
    Keywords: Harmful algal blooms ; HAB ; Anton Bruun Memorial Lecture ; ASFA_2015::O::Oceanographers ; ASFA_2015::M::Marine biology ; ASFA_2015::A::Algal blooms
    Repository Name: AquaDocs
    Type: Report
    Format: 28pp.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-09-21
    Description: • Harmful Algal Blooms (HABs) result from noxious and/or toxic algae that cause direct and indirect negative impacts to aquatic ecosystems, coastal resources, and human health. • HABs are present in nearly all aquatic environments (freshwater, brackish and marine), as naturally occurring phenomena. • Many HABs are increasing in severity and frequency, and biogeographical range. Causes are complex, but in some cases can be attributed to climate change and human impacts, including eutrophication, habitat modification, and human- mediated introduction of exogenous species. • There is no plan, and nor realistic possibility, to eliminate HABs and/or their depend-ent consequences. Decades of research and monitoring have, however, improved our understanding of HAB events, leading to better monitoring and prediction strate-gies. • HABs are a worldwide phenomenon requiring an international understanding leading ultimately to local and regional solutions. Continued progress in research, management, mitigation, and prediction of HABs benefits from international coordination. In this spirit, the international community has developed programmes sponsored by the Intergovernmental Oceanographic Commission (IOC) and Scientific Committee on Oceanic Research (SCOR) to coordinate international HAB research, framework activities, and capacity building. • HABs are recognized as one facet of complex ecosystem interactions with human society. HAB research, monitoring, and management must be closely integrated with policy decisions that affect our global oceans. • New initiatives, such as GlobalHAB sponsored by IOC and SCOR, will continue to provide the mechanisms to further understand, predict, and mitigate HABs. Research, management, and mitigation efforts directed towards HABs must be coordinated with other local, national, and international efforts focused on food and water security, human and ecosystem health, ocean observing systems, and climate change.
    Description: OPENASFA INPUT For bibliographic purposes this document should be cited as: R.M. Kudela et al. 2015. Harmful Algal Blooms. A Scientific Summary for Policy Makers. IOC/UNESCO, Paris (IOC/INF-1320).
    Description: Published
    Description: Non Refereed
    Keywords: HAB ; Harmful Algae Bloom ; Noxious algae ; Toxic algae ; Aquatic ecosystems ; Coastal resources ; Human health ; Climate Change ; Human impact ; Policy making ; Food security ; Water security
    Repository Name: AquaDocs
    Type: Report
    Format: 20pp.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-09-21
    Description: Arid countries throughout the world are heavily reliant on seawater desalination for their supply of drinking and municipal water. The desalination industry is large and rapidly growing, approaching more than 20,000 plants operating or contracted in greater than 150 countries worldwide and capacity projected to grow at a rate of 12% per year for the next several decades (http://www.desaldata.com; 2016). Desalination plants are broadly distributed worldwide, with a large and growing capacity in what will be referred to as the “Gulf” region throughout this manual. Here the Gulf refers to the shallow body of water bounded in the southwest by the Arabian Peninsula and Iran to the northeast. The Gulf is linked with the Arabian Sea by the Strait of Hormuz and the Gulf of Oman to the east and extends to the Shatt al-Arab river delta at its western end. One of the operational challenges facing the industry is also expanding globally – the phenomena termed harmful algal blooms or HABs. Blooms are cell proliferations caused by the growth and accumulation of individual algal species; they occur in virtually all bodies of water. The algae, which can be either microscopic or macroscopic (e.g., seaweeds) are the base of the marine food web, and produce roughly half of the oxygen we breathe. Most of the thousands of species of algae are beneficial to humans and the environment, but there are a small number (several hundred) that cause HABs. This number is vague because the harm caused by HABs is diverse and affects many different sectors of society (see Chapter 1). HABs are generally considered in two groups. One contains the species that produce potent toxins (Chapter 2) that can cause a wide range of impacts to marine resources, including mass mortalities of fish, shellfish, seabirds, marine mammals, and various other organisms, as well as illness and death in humans and other consumers of fish or shellfish that have accumulated the algal toxins during feeding. The second category is represented by species that produce dense blooms - often termed high biomass blooms because of the large number of cells. Cells can reach concentrations sufficient to make the water appear red (hence the common term “red tide”), though brown, green and golden blooms are also observed, while many blooms are not visible. In this manual, we define toxic algae as those that produce potent toxins (poisonous substances produced within living cells or organisms), e.g., saxitoxin. These can cause illness or mortality in humans as well as marine life through either direct exposure to the toxin or ingestion of bioaccumulated toxin in higher trophic levels e.g. shellfish. Non-toxic HABs can cause damage to ecosystems and commercial facilities such as desalination plants, sometimes because of the biomass of the accumulated algae, and in other cases due to the release of compounds that are not toxins (e.g., reactive oxygen species, mucilage) but that can still be lethal to marine animals or cause disruptions of other types. Both toxic and non-toxic HABs represent potential threats to seawater desalination facilities. Although toxins are typically removed very well by reverse osmosis and thermal desalination processes (see Chapter 10), algal toxins represent a potential health risk if they are present in sufficiently high concentrations in the seawater and if they break through the desalination process. It is therefore important for operators to be aware when toxic blooms are near their plants so they can ensure that the removal has indeed occurred (Chapter 3). High biomass blooms pose a different type of threat, as the resulting particulate and dissolved organic material can accelerate clogging of media filters or contribute to (bio)fouling of pretreatment and RO membranes which may lead to a loss of production. Impacts of HABs on desalination facilities are thus a significant and growing problem, made worse by the lack of knowledge of this phenomena among plant operators, managers, engineers, and others involved in the industry, including regulatory agencies. Recognizing this problem, the Middle East Desalination Research Center (MEDRC) and the UNESCO Intergovernmental Oceanographic Commission (IOC) organized a conference in 2012 in Muscat, Oman, to bring HAB researchers and desalination professionals together to exchange knowledge and discuss the scale of the problem and strategies for addressing it. One of the recommendations of that meeting was that a “guidance manual” be prepared to provide information to desalination plant operators and others in the industry about HABs, their impacts, and the strategies that could be used to mitigate those impacts. With support from the US Agency for International Development (USAID) and the IOC Intergovernmental Panel for Harmful Algal Blooms (IPHAB), an editorial team was assembled and potential authors contacted. For the first time, HAB scientists worked closely with desalination professionals to write chapters that were scientifically rigorous yet practical in nature – all focused on HABs and desalination. During the planning of this manual, it became clear from an informal survey of the desalination industry that generally, HAB problems are far more significant for seawater reverse osmosis (SWRO) plants than for those that use thermal desalination. Both types of processes are very effective in removing HAB toxins (Chapter 10), but the SWRO plants are far more susceptible to clogging of pretreatment granular media filters and fouling of membranes by algal organic matter and particulate biomass. Accordingly, the focus of this book is on SWRO, with only occasional reference to thermal processes. Likewise, emphasis has been placed on seawater HABs, with reference to estuarine and brackish-water HABs only when practices from those types of waters can be informative or illustrative. A brief synopsis of the book follows. Chapter 1 provides a broad overview of HAB phenomena, including their impacts, the spatial and temporal nature of their blooms, common causative species, trends in occurrence, and general aspects of bloom dynamics in coastal waters. Chapter 2 describes the metabolites of HAB cells, including toxins, taste and odor compounds. Methods for analyses are presented there, supplemented by detailed methodological descriptions of rapid toxin screening methods in Appendix 2. As discussed in Chapters 8 and 10, thermal and SWRO operations are highly effective in the removal of HAB toxins, but plant personnel should have the capability to screen for these toxins in raw and treated water to ensure that this removal has been effective. This would be critical, for example, if the public or the press were aware of a toxic HAB in the vicinity of a desalination plant intake and asked for proof that their drinking water is safe. Currently, most desalination plants do not collect data on seawater outside their plants, so they are generally unaware of the presence (now or anticipated) of a potentially disruptive HAB. Chapter 3 provides practical information on the approaches to implementing an observing system for HABs, describing sampling methods and measurement options that can be tailored to available resources and the nature of the HAB threat in a given area. Appendix 4 provides more details on methods used to count and identify HAB cells during this process. All are based on direct water sampling, but it is also possible to observe HABs from space – particularly the high biomass events. Chapter 4 describes how satellite remote sensing can be used to detect booms. The common sources of imagery (free over the Internet) are presented, as well as descriptions of the software (also free) that can be used to analyze the satellite data. It is relatively easy and highly informative for plant personnel to use this approach to better understand what is in the seawater outside their plants. The cover of this guide provides a graphic example of the incredible scale and resolution of this observational approach. Chapter 5 discusses typical water quality parameters that are measured online or in feedwater samples at desalination plants that could be used to detect blooms at the intake or evaluate process efficiency in removing algal particulates and organics. Emerging parameters that also show promise are examined to provide a resource for plant personnel. Chapter 6 looks at desalination seawater intakes that are the first point of control in minimizing the ingress of algae into the plant. A brief overview of siting considerations that may ultimately drive the location of an intake is also provided. One question asked frequently of HAB scientists is whether the blooms can be controlled or suppressed in a manner analogous to the treatment of insects or other agricultural pests on land. This has proven to be an exceedingly difficult challenge for the HAB scientific and management community, given the dynamic nature of HABs in coastal waters, their large spatial extent, and concerns about the environmental impacts of bloom control methods. Chapter 7 presents a summary of the approaches to bloom prevention and control that have been developed, and discusses whether these are feasible or realistic in the context of an individual desalination plant. Chapter 8 describes management strategies for HABs and risk assessment, including Hazard Analysis Critical Control Point (HACCP) and Alert Level Framework procedures. Once a HAB is detected, a wide range of approaches can be used to address the problems posed by the dissolved toxins associated with those blooms. Chapter 9 presents many of these pretreatment strategies and discusses their use in removing algal organic matter and particulates to prevent filter clogging and membrane fouling. This is necessary to maintain effective plant operation and avoid serious operational challenges for the reverse osmosis step. The chapter covers common pretreatments such as chlorination/dechlorination, coagulation, dissolved air flotation, granular media filtration, ultrafiltration, and cartridge filtration, in addition to discussing issues experienced due to the inefficiencies of each pretreatment on reverse osmosis. Chapter 10 then addresses the important issue of HAB toxin removal during pretreatment and desalination, and describes laboratory and pilot-scale studies that address that issue. Finally, Chapter 11 provides a series of case studies describing individual HAB events at desalination plants throughout the world, detailing the types of impacts and the strategies that were used to combat them. These studies should be of great interest to other operators as they encounter similar challenges. The manual concludes with a series of appendices that provide images and short descriptions of common HAB species (Appendix 1), rapid screening methods for HAB toxins (Appendix 2), methods to measure transparent exopolymer particles (TEP) and their precursors (Appendix 3), methods to enumerate algal cells (Appendix 4), and reverse osmosis autopsy and cleaning methods (Appendix 5).
    Description: OPENASFA INPUT For bibliographic purposes this document should be cited as follows: Anderson D. M., S. F. E. Boerlage, M. B. Dixon (Eds), Harmful Algal Blooms (HABs) and Desalination: A Guide to Impacts, Monitoring and Management. Paris, Intergovernmental Oceanographic Commission of UNESCO, 2017. 539 pp. (IOC Manuals and Guides No.78.) (English.) (IOC/2017/MG/78).
    Description: Published
    Description: Refereed
    Keywords: Desalination ; Water ; Water quality ; Water security ; Harmful Algae Bloom ; HAB ; Toxic algae ; Non-toxic algae ; Algae ; Poisonous substances ; Seawater Reverse Osmosis ; Remote sensing
    Repository Name: AquaDocs
    Type: Report
    Format: 538pp.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    UNESCO-IOC/SCOR | Paris, France
    Publication Date: 2022-09-29
    Description: Our planet Earth is changing. Marine and freshwater ecosystems are experiencing intense natural and anthropogenic pressures that will generate unforeseen changes in their struc-ture and functioning. The drivers of climate change have already altered the dynamics and interactions of the biotic and abiotic components in these ecosystems, and these changes are anticipated to accelerate in the future. Embedded within natural aquatic ecosystems are Harm-ful Algal Blooms (HABs) that are noxious to aquatic organisms as well as human health and wellbeing. There is concern that climate-driven changes will exacerbate HABs at a time when humans are increasingly reliant on aquatic systems for food and drinking water, livelihoods, mariculture and recreational resources. But there are many unknowns. What trends are evident in HAB distribution, frequency and severity? Might the drivers of climate change alter ecological out-comes to promote HABs? How might HABs and other planktonic species adapt to a changing environment? And, how can we prevent or mitigate future HABs impacts? These are only some of the important questions for which the scientific community should seek answers. The need to support this process forms the basis of the GlobalHAB Programme, launched by IOC UNESCO and SCOR, with the aim of promoting international and multidisciplinary coordina-tion of the research on HABs (www.globalhab.info). HAB science today is founded on studies dealing with a great diversity of topics and harmful organisms, using a variety of continuously evolving experimental methods and approaches. The rich insights obtained to date have been key to supporting research on the potential impacts of climate change on HABs. But more quantitative intercomparisons are now needed amongst studies as well as global comparisons of generated data, which is hampered by the diversity of methods and approaches that have brought us so far. The challenge to achieving greater harmonization of our experimental and observational practices is substantial, although it is acknowledged that this is not necessarily the case in all situations. The major aim of these guidelines is to communicate standardized strategies, tools, and protocols to assist researchers studying how climate change drivers may increase or decrease future HAB prevalence in aquatic ecosystems. These guidelines represent a first step that will help inform HAB scientists, students, and researchers entering the field, as well as scientists seeking to incorporate HAB studies into existing and developing ocean and freshwater observing systems.
    Description: Scientific Committee on Oceanic Research (SCOR) provided by the U.S. National Science Foundation (Grants OCE-OCE- 1546580 and OCE-1840868)
    Description: National SCOR committees
    Description: OPENASFA INPUT This publication should be cited as follows: GlobalHAB. 2021. Guidelines for the Study of Climate Change Effects on HABs. Paris, UNESCO-IOC/SCOR. M. Wells et al. (eds.) (IOC Manuals and Guides no 88)
    Description: Published
    Description: Refereed
    Keywords: HAB ; Harmful Algae Bloom ; Marine Algae ; Climate Change ; Changing environmental conditions ; Long term observations ; Climate change effects on HABs
    Repository Name: AquaDocs
    Type: Report
    Format: 120pp.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-11-02
    Description: Among the approximately 10,000 beneficial species of marine phytoplankton in the world’s oceans today, some 200 taxa can harm human society through the production of toxins that threaten seafood security and human health. These toxins are also responsible for wild or aquaculture fish-kills, may interfere with recreation-al use of coastal or inland waters, or cause economic losses. Non-toxic microalgae attaining high biomass can also cause Harmful Algal Blooms (HABs) by producing seawater discolorations, anoxia or mucilage that negatively affect the environment and human activities. The most frequently asked questions about harmful algal blooms are if they are increasing and expand-ing worldwide, and what are the mechanisms behind this perceived escalation. These questions have been addressed in several review papers concerning HAB trends at various scales, where evidences of expansion, intensification and increased impacts of harmful algal blooms have been gathered from a selection of examples that have gained high prominence in the scientific world and in society 1,2,3,4. Eutrophication, human-mediated introduction of alien harmful species, climatic variability, and aquaculture have all been mentioned as possible causes of HAB trends at various spatial and temporal scales 5,6. Over the last 40 years, the capacity and monitoring efforts to detect harmful species and harmful events have significantly increased, thus increasing the reporting of harmful events across the world’s seas. The resulting information is mostly scattered in the ever growing literature, with data from statutory monitoring programs often not published in peer review journals, while an extensive and detailed overview of the huge amount of information on harmful species, their spatial and temporal distribution and the trends of HABs they have caused has never been attempted so far. This lack of a synthesis of the relevant data has hampered a sound global assessment of the present status of phenomena related to harmful algae. Following the lead of the International Panel for Climate Change (IPCC) consensus reporting mechanism, and to complement the World Ocean Assessment, the need has been expressed for a Global HAB Status Report compiling an overview of Harmful Algal Bloom events and their societal impacts; providing a worldwide appraisal of the occurrence of toxin-producing microalgae; aimed towards the long term goal of assessing the status and probability of change in HAB frequencies, intensities, and range resulting from environmental changes at the local and global scale. This initiative was launched in April 2013 in Paris by the IOC Intergovernmental Panel on HABs (IOC/IPHAB), and has been pursued with the support of the Government of Flanders and hosted within the IOC International Oceanographic Date Exchange Programme (IODE) in partnership with ICES, PICES and IAEA. As a first step towards a global HAB status assessment, a Special Issue of the journal Harmful Algae (vol. 102, February 2021) has been published comprising 12 papers 7-18 each presenting an overview of toxic and non-toxic HABs in a specific area of the world’s seas. The regional overviews build on existing literature and exploit the information gathered in two relevant data-bases, both incorporated into the Ocean Biodiversity Information System (OBIS).
    Description: Government of Flanders
    Description: OPENASFA INPUT This Global HAB Status Report summary was prepared based on the special issue Global HAB Status reporting, vol. 102 (Feb. 2021) of the Harmful Algae (Elsevier Journal)
    Description: Published
    Description: Refereed
    Keywords: Harmful Algae Bloom ; Status Report ; HAB ; IODE ; International Oceanographic Data and Information Exchange ; Ocean Biodiversity Information System ; OBIS ; Harmful species ; PICES ; ICES ; IAEA
    Repository Name: AquaDocs
    Type: Report
    Format: 14pp.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...