ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04.01. Earth Interior  (2)
  • Oxford University Press  (1)
  • SGI  (1)
  • American Physical Society (APS)
  • Nature Publishing Group
  • 2020-2023  (2)
  • 1
    Publication Date: 2021-11-29
    Description: The geological evolution of the western Mediterranean exhibits complicated interactions between orogenic processes and widespread extensional tectonics. The region is located in a convergent plate margin separating Africa and Europe, and consists of marine basins – the Alboran Sea, the Algerian- Provençal Basin, the Valencia trough, the Ligurian Sea and the Tyrrhenian Sea- which formed as back-arc basins since the Oligocene. In most reconstructions, it has been stressed that back-arc extension led to drifting of continental blocks and to large-scale block rotations. The opening of the Ligurian Sea. is in fact the result of counterclockwise rotation of Corsica and Sardinia. From the point of view of seismicity, the south western Alps and northern part of the Ligurian basin are subject to frequent earthquakes of low to moderate magnitudes. However significantly destructive events are known to have occurred in the past (e.g. 1564 and 1887). Apart from these rare large events, regional studies agree in concluding that the important local microseismicity appears to be poorly focused (e.g., COURBOULEX et alii, 2007) and that, if some tectonic lines are documented onland (COURBOULEX et alii, 2001), the active structures at sea remain unknown. It is therefore an essential prerequisite to gain better insight into the deep seismogenic structures along the North Ligurian margin and even farther offshore, in the identified oceanic domain. The fact that some of these structures can undergo ruptures of Mw~6.5, such as the 1887 event (BAKUN & SCOTTI, 2006), suggests that, at least to some extent, instrumental insufficiencies in the detection and location of microseismicity is a limit to identify active faults that have not experienced large instrumented ruptures to date. The irregular coverage provided by regional seismic networks produces a bias in the recording of local seismicity. Permanent stations are naturally limited to land areas and fail to properly constrain seismicity offshore. Taking into consideration the peculiarities of regional dynamics (low strain rates, rare large events and a regular seismic activity limited to small events with M 〈 3-4), even onshore seismicity is insufficiently covered by permanent networks and requires dense temporary instrumenting by mobile stations. Considering the potential threat of strong offshore earthquakes, it is of first importance to characterize faults that are prone to rupture in order to quantify associated seismic and tsunami hazards. Assuming some weak seismicity exists along these faults and remains undetected by onland networks, some marine stations are necessary to address instrumental remoteness and help delineate active structures. Moreover, since the velocity models used for locations are obtained by inverting seismic data and the reliability of their locations depend, in turn, from the quality of the velocity model used for their hypocentral parameters, the constraints on the seismic path provided by a more dense seismic network may contribute to a more accurate reference model. In this study, we profited from the recent developments in sea bottom seismic instrumentation to deploy OBSs above the zones of the North Ligurian to perform seismic shots and obtain the distribution of seismic velocities with 3D active tomography. We also took the opportunity of the long term (6 months) OBSs reduced array to decrease both the detection threshold and recording distances so as to obtain more complete catalogs and better localisations.
    Description: Published
    Description: 789-791
    Description: 1T. Struttura della Terra
    Description: N/A or not JCR
    Keywords: 04.01. Earth Interior ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-12-24
    Description: This article has been accepted for publication in Geophysical Journal International ©: The Authors 2021. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. Uploaded in accordance with the publisher's self-archiving policy.
    Description: Ambient-noise records from the AlpArray network are used to measure Rayleigh wave phase velocities between more than 150,000 station pairs. From these, azimuthally anisotropic phase-velocity maps are obtained by applying the Eikonal tomography method. Several synthetic tests are shown to study the bias in the Ψ2 anisotropy. There are two main groups of bias, the first one caused by interference between refracted/reflected waves and the appearance of secondary wavefronts that affect the phase travel-time measurements. This bias can be reduced if the amplitude field can be estimated correctly. Another source of error is related to the incomplete reconstruction of the travel-time field that is only sparsely sampled due to the receiver locations. Both types of bias scale with the magnitude of the velocity heterogeneities. Most affected by the spurious Ψ2 anisotropy are areas inside and at the border of low-velocity zones. In the isotropic velocity distribution, most of the bias cancels out if the azimuthal coverage is good. Despite the lack of resolution in many parts of the surveyed area, we identify a number of anisotropic structures that are robust: in the central Alps, we find a layered anisotropic structure, arc-parallel at midcrustal depths and arc-perpendicular in the lower crust. In contrast, in the eastern Alps, the pattern is more consistently E-W oriented which we relate to the eastward extrusion. The northern Alpine forleand exhibits a preferential anisotropic orientation that is similar to SKS observations in the lowermost crust and uppermost mantle.
    Description: German Science Foundation (SPP-2017, Project Ha 2403/21-1); Swiss National Science Foundation SINERGIA Project CRSII2-154434/1 (Swiss-AlpArray); Progetto Pianeta Dinamico, finanziamento MUR-INGV, Task S2 – 2021
    Description: Published
    Description: 151–170
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: Seismic anisotropy ; Seismic interferometry ; Seismic tomography ; Wave propagation ; Continental tectonics: compressional ; 04.01. Earth Interior ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...