ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (38)
  • John Wiley & Sons, Inc.  (30)
  • American Meteorological Society
  • Copernicus Publications (EGU)
  • Inter Research
  • Springer Nature
  • 2020-2023  (38)
  • 1
    Publication Date: 2022-04-04
    Description: Harmful algal blooms (HABs) are globally increasing in number and spatial extent. However, their propagation dynamics along environmental gradients and the associated interplay of abiotic factors and biotic interactions are still poorly understood. In this study, a nutrient gradient was established in a linear meta‐ecosystem setup of five interconnected flasks containing an artificially assembled phytoplankton community. The harmful dinoflagellate Alexandrium catenella was introduced into different positions along the nutrient gradient to investigate dispersal and spatial community dynamics. Overall, total algal biovolume increased, while community evenness decreased with increasing nutrient concentrations along the gradient. Alexandrium was able to disperse through all flasks. On the regional scale, diatoms dominated the community, whereas on the local scale the dinoflagellate showed higher contributions at low nutrient concentrations and dominated the community at the lowest nutrient concentration, but only when initiated into this flask. A control treatment without dispersal revealed an even stronger dominance of Alexandrium at the lowest nutrient concentration, indicating that dispersal and the associated nutrient exchange may weaken dinoflagellate dominance under low nutrient conditions. This study presents a first approach to experimentally investigate spatial dynamics and ecological interactions of a harmful dinoflagellate along an environmental gradient in a meta‐ecosystem setup, which has the potential to substantially enhance our understanding of the relevance of dispersal for HAB formation and propagation in combination with local environmental factors.
    Description: Volkswagen Foundation http://dx.doi.org/10.13039/501100001663
    Keywords: ddc:579 ; ddc:550.724
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-04-04
    Description: Microbial organic matter decomposition is a critical ecosystem function, which can be negatively affected by chemicals. Although the majority of organic matter is stored in sediments, the impact of chemicals has exclusively been studied in benthic systems. To address this knowledge gap, we assessed the impact of a fungicide mixture at three concentrations on the decomposition of black alder leaves in the benthic and hyporheic zone. We targeted two sediment treatments characterized by fine and coarse grain sizes (1–2 vs. 2–4 mm). Besides microbial communities' functioning (i.e., decomposition), we determined their structure through microbial biomass estimates and community composition. In absence of fungicides, leaf decomposition, microbial biomass estimates and fungal sporulation were lower in the hyporheic zone, while the importance of bacteria was elevated. Leaf decomposition was reduced (40%) under fungicide exposure in fine sediment with an effect size more than twice as high as in the benthic zone (15%). These differences are likely triggered by the lower hydraulic conductivity in the hyporheic zone influencing microbial dispersal as well as oxygen and nutrient fluxes. Since insights from the benthic zone are not easily transferable, these results indicate that the hyporheic zone requires a higher recognition with regard to ecotoxicological effects on organic matter decomposition.
    Description: German Research Foundation, Project AQUA‐REG http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:550.724 ; ddc:579
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-04-04
    Description: Nutrients limiting phytoplankton growth in the ocean are a critical control on ocean productivity and can underpin predicted responses to climate change. The extensive western subtropical North Pacific is assumed to be under strong nitrogen limitation, but this is not well supported by experimental evidence. Here, we report the results of 14 factorial nitrogen–phosphorus–iron addition experiments through the Philippine Sea, which demonstrate a gradient from nitrogen limitation in the north to nitrogen–iron co‐limitation in the south. While nitrogen limited sites responded weakly to nutrient supply, co‐limited sites bloomed with up to ~60‐fold increases in chlorophyll a biomass that was dominated by initially undetectable diatoms. The transition in limiting nutrients and phytoplankton growth capacity was driven by a gradient in deep water nutrient supply, which was undetectable in surface concentration fields. We hypothesize that this large‐scale phytoplankton response gradient is both climate sensitive and potentially important for regulating the distribution of predatory fish.
    Description: National Natural Science Foundation of China http://dx.doi.org/10.13039/501100001809
    Keywords: ddc:577.7 ; ddc:550.724
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-04-04
    Description: In 1883, Theodor Wilhelm Engelmann, a German scientist, wrote his essay “color and assimilation” (Ger.: “Farbe und Assimilation”) describing the state of the art in photosynthesis research, his recent findings, and further assumptions based upon his presented results. Nearly 140 years later, many of his assumptions were proven correct. By his still well‐known bacteria experiments using aerotactic, heterotrophic bacteria, he identified the chloroplasts as the location in which photosynthesis and oxygen production takes place. Furthermore, by evaluating the effects of different light spectra, he constructed the first action spectra that demonstrated the implication of the “green gap” of chlorophylls. He further posited that accessory photosynthetic pigments existed to extend the absorption range of chlorophyll. Although infrequently cited, his work was foundational for current ecological research of the vertical appearance of algae species within the underwater gradient in light spectrum due to specific harvesting of different light spectra, hence complementary chromatic adaptation of communities. This short retrospective highlights this piece of literature that represents an early step toward our current understanding of ecological competition for light spectra.
    Keywords: ddc:572.46 ; ddc:570.9
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-04-07
    Description: Inland waters receive and process large amounts of colored organic matter from the terrestrial surroundings. These inputs dramatically affect the chemical, physical, and biological properties of water bodies, as well as their roles as global carbon sinks and sources. However, manipulative studies, especially at ecosystem scale, require large amounts of dissolved organic matter with optical and chemical properties resembling indigenous organic matter. Here, we compared the impacts of two leonardite products (HuminFeed and SuperHume) and a freshly derived reverse osmosis concentrate of organic matter in a set of comprehensive mesocosm‐ and laboratory‐scale experiments and analyses. The chemical properties of the reverse osmosis concentrate and the leonardite products were very different, with leonardite products being low and the reverse osmosis concentrate being high in carboxylic functional groups. Light had a strong impact on the properties of leonardite products, including loss of color and increased particle formation. HuminFeed presented a substantial impact on microbial communities under light conditions, where bacterial production was stimulated and community composition modified, while in dark potential inhibition of bacterial processes was detected. While none of the browning agents inhibited the growth of the tested phytoplankton Gonyostomum semen, HuminFeed had detrimental effects on zooplankton abundance and Daphnia reproduction. We conclude that the effects of browning agents extracted from leonardite, particularly HuminFeed, are in sharp contrast to those originating from terrestrially derived dissolved organic matter. Hence, they should be used with great caution in experimental studies on the consequences of terrestrial carbon for aquatic systems.
    Description: Marie Curie International Outgoing Fellowship
    Description: Swedish Research Council Formas http://dx.doi.org/10.13039/501100001862
    Description: Knut and Alice Wallenberg Foundation http://dx.doi.org/10.13039/501100004063
    Keywords: ddc:551.48 ; ddc:550.724
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-04-01
    Description: The interaction between the land surface and the atmosphere is a crucial driver of atmospheric processes. Soil moisture and precipitation are key components in this feedback. Both variables are intertwined in a cycle, that is, the soil moisture – precipitation feedback for which involved processes and interactions are still discussed. In this study the soil moisture – precipitation feedback is compared for the sempiternal humid Ammer catchment in Southern Germany and for the semiarid to subhumid Sissili catchment in West Africa during the warm season, using precipitation datasets from the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), from the German Weather Service (REGNIE) and simulation datasets from the Weather Research and Forecasting (WRF) model and the hydrologically enhanced WRF‐Hydro model. WRF and WRF‐Hydro differ by their representation of terrestrial water flow. With this setup we want to investigate the strength, sign and variables involved in the soil moisture – precipitation feedback for these two regions. The normalized model spread between the two simulation results shows linkages between precipitation variability and diagnostic variables surface fluxes, moisture flux convergence above the surface and convective available potential energy in both study regions. The soil moisture – precipitation feedback is evaluated with a classification of soil moisture spatial heterogeneity based on the strength of the soil moisture gradients. This allows us to assess the impact of soil moisture anomalies on surface fluxes, moisture flux convergence, convective available potential energy and precipitation. In both regions the amount of precipitation generally increases with soil moisture spatial heterogeneity. For the Ammer region the soil moisture – precipitation feedback has a weak negative sign with more rain near drier patches while it has a positive signal for the Sissili region with more rain over wetter patches. At least for the observed moderate soil moisture values and the spatial scale of the Ammer region, the spatial variability of soil moisture is more important for surface‐atmosphere interactions than the actual soil moisture content. Overall, we found that soil moisture heterogeneity can greatly affect the soil moisture – precipitation feedback.
    Description: WRF and WRF‐hydro model simulations are used to determine the sign and analyse the mechanisms of the soil moisture ‐ precipitation feedback for the sempiternal humid Ammer catchment in Southern Germany and for the semiarid to subhumid Sissili catchment in West Africa during the warm season. The generation of moist convection is favoured over surfaces with moderately high soil moisture gradients in the Ammer region, while for the Sissili region the location of precipitation tends to be related to areas with high soil moisture gradients. For the Ammer region the soil moisture – precipitation feedback has a weak negative sign with more rain near drier patches while it has a positive signal for the Sissili region with more rain over wetter patches.
    Description: Untersuchung des Klimas des südlichen Afrikas – ein Brückenschlag vom frühen Holozän bis heute
    Description: Transregional Collaborative Research Center
    Keywords: ddc:551.57 ; ddc:631.4
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-04-01
    Description: Light is a fundamental resource for phytoplankton. To utilize the available light, most phytoplankton species possess pigments in taxon‐specific combinations and quantities, which in turn result in a specific use of certain wavelengths. This optimizes the light use efficiency, allows for a complementary use of light, and may be an additional driver for community structure. While the effects of light intensity on phytoplankton biomass production and community composition have been intensively studied, here we focused on the effects of specific light spectrum quality (thus light color) on a natural phytoplankton community. In a controlled mesocosm experiment we reduced the supplied wavelength range to its blue, green, or red part of the light spectrum and compared the responses of each treatment to a full spectrum control over 28 d. Highest community growth rates were observed under blue, lowest under red light. Light absorption by the communities showed adaptation toward the supplied wavelength range. Community composition was significantly affected by light quality treatments, driven by Bacillariophyta and Chlorophyta, whereas pigment composition was not. Furthermore, lower species richness but higher evenness occurred when communities were exposed to red light compared to the full spectrum. We expected the response of phytoplankton communities to changes in the light spectrum to be driven by a combination of species sorting and pigment acclimation; however, the effect of species sorting turned out to be stronger. Our study showed that, even if species might acclimate, changes in the available light spectrum affect primary production and phytoplankton community composition.
    Keywords: ddc:579
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-04-05
    Description: Nitrate monitoring is commonly conducted with low‐spatial resolution, only at the outlet or at a small number of selected locations. As a result, the information about spatial variations in nitrate export and its drivers is scarce. In this study, we present results of high‐spatial resolution monitoring conducted between 2012 and 2017 in 65 sub‐catchments in an Alpine mesoscale river catchment characterized by a land‐use gradient. We combined stable isotope techniques with Bayesian mixing models and geostatistical methods to investigate nitrate export and its main drivers, namely, microbial N turnover processes, land use and hydrological conditions. In the investigated sub‐catchments, mean values of NO3− concentrations and its isotope signatures (δ15NNO3 and δ18ONO3) varied from 2.6 to 26.7 mg L−1, from −1.3‰ to 13.1‰, and from −0.4‰ to 10.1‰, respectively. In this study, land use was an important driver for nitrate export. Very strong and strong positive correlations were found between percentages of agricultural land cover and δ15NNO3, and NO3− concentration, respectively. Mean proportional contributions of NO3− sources varied spatially and seasonally, and followed land‐use patterns. The mean contribution of manure and sewage was much higher in the catchments characterized by a high percentage of agricultural and urban land cover comparing to forested sub‐catchments. Specific NO3− loads were strongly correlated with specific discharge and moderately correlated with NO3− concentrations. The nitrate isotope and concentration analysis results suggest that nitrate from external sources is stored and accumulated in soil storage pools. Nitrification of reduced nitrogen species in those pools plays the most important role for the N‐dynamics in the Erlauf river catchment. Consequently, nitrification of reduced N sources was the main nitrate source except for a number of sub‐catchments dominated by agricultural land use. In the Erlauf catchment, denitrification plays only a minor role in controlling NO3− export on a regional scale.
    Description: We integrated results of the BMM with informative priors and top‐kriging. Reduced N stored in soil is an important source for stream N in a mesoscale catchment. Manure and sewage is the main NO3− source in agricultural sub‐catchments. Denitrification played only a minor role in controlling regional scale NO3− export.
    Keywords: ddc:551.48
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-03-30
    Description: Complex networks of both natural and engineered flow paths control the hydrology of streams in major cities through spatio‐temporal variations in connection and disconnection of diverse water sources. We used spatially extensive and temporally intensive sampling of water stable isotopes to disentangle the hydrological sources of the heavily urbanized Panke catchment (~220 km2) in the north of Berlin, Germany. The isotopic data enabled us to partition stream water sources across the catchment using a Bayesian mixing analysis. The upper part of the catchment streamflow is dominated by groundwater (~75%) from gravel aquifers. In dry summer periods, streamflow becomes intermittent in the upper catchment, possibly as a result of local groundwater abstractions. Storm drainage dominates the responses to precipitation events. Although such events can dramatically change the isotopic composition of the upper stream network, storm drainage only accounts for 10%–15% of annual streamflow. Moving downstream, subtle changes in sources and isotope signatures occur as catchment characteristics vary and the stream is affected by different tributaries. However, effluents from a wastewater treatment plant (WWTP), serving 700,000 people, dominate stream flow in the lower catchment (~90% of annual runoff) where urbanization effects are more dramatic. The associated increase in sealed surfaces downstream also reduces the relative contribution of groundwater to streamflow. The volume and isotopic composition of storm runoff is again dominated by urban drainage, though in the lower catchment, still only about 10% of annual runoff comes from storm drains. The study shows the potential of stable water isotopes as inexpensive tracers in urban catchments that can provide a more integrated understanding of the complex hydrology of major cities. This offers an important evidence base for guiding the plans to develop and re‐develop urban catchments to protect, restore, and enhance their ecological and amenity value.
    Description: Intermittent urban stream. Groundwater and waste water dominance. High temporal and spatial stable isotope dataset. End member mixing analysis. Water import.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Einstein Stiftung Berlin http://dx.doi.org/10.13039/501100006188
    Description: Leverhulme Trust http://dx.doi.org/10.13039/501100000275
    Keywords: ddc:551.48
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-03-30
    Description: Fjords are recognized as hotspots of organic carbon (OC) burial in the coastal ocean. In fjords with glaciated catchments, glacier discharge carries large amounts of suspended matter. This sedimentary load includes OC from bedrock and terrigenous sources (modern vegetation, peat, soil deposits), which is either buried in the fjord or remineralized during export, acting as a potential source of CO2 to the atmosphere. In sub‐Antarctic South Georgia, fjord‐terminating glaciers have been retreating during the past decades, likely as a response to changing climate conditions. We determine sources of OC in surface sediments of Cumberland Bay, South Georgia, using lipid biomarkers and the bulk 14C isotopic composition, and quantify OC burial at present and for the time period of documented glacier retreat (between 1958 and 2017). Petrogenic OC is the dominant type of OC in proximity to the present‐day calving fronts (60.4 ± 1.4% to 73.8 ± 2.6%) and decreases to 14.0 ± 2.7% outside the fjord, indicating that petrogenic OC is effectively buried in the fjord. Beside of marine OC, terrigenous OC comprises 2.7 ± 0.5% to 7.9 ± 5.9% and is mostly derived from modern plants and Holocene peat and soil deposits that are eroded along the flanks of the fjord, rather than released by the retreating fjord glaciers. We estimate that the retreat of tidewater glaciers between 1958 and 2017 led to an increase in petrogenic carbon accumulation of 22% in Cumberland West Bay and 6.5% in Cumberland East Bay, suggesting that successive glacier retreat does not only release petrogenic OC into the fjord, but also increases the capacity of OC burial.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:552 ; ddc:551.9
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...