ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Geochemistry  (2)
  • Massachusetts Institute of Technology and Woods Hole Oceanographic Institution  (2)
  • American Association for the Advancement of Science (AAAS)
  • Springer Nature
  • Wiley-Blackwell
  • 2020-2023  (2)
Collection
Publisher
Years
Year
  • 1
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemical Oceanography at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution May 2022.
    Description: Removal of particulate organic carbon (POC) from sunlit surface waters into the deep ocean represents a climatically important sink of atmospheric carbon dioxide (CO2), linking the biogeochemical cycling of POC to CO2-driven climate change. As POC is not well preserved in the sediment record, other proxies, including the chemistry of barium (Ba) in the ocean and through the sedimentary record, offer an avenue to investigate oceanic carbon export through Earth’s history. This thesis seeks to constrain the controls on the formation, cycling, and isotopic signature of the main particulate phase of marine barium, the mineral barite (BaSO4) through its inception in the water column, during deposition, and ultimately into the rock record. To that end, I characterize the depth, spatial region, and general controls on particulate Ba formation in the South Pacific Ocean through shipboard experimentation and find that particulate Ba forms mainly in the surface of the Polar Frontal Zone in the presence of large particles and microbial activity. Next, I characterize the effect of ion exchange on BaSO4, a process previously unstudied under marine conditions, in a laboratory setting. Ion exchange occurs rapidly between dissolved Ba and BaSO4 and imparts a characteristic net offset between the Ba isotope composition of the dissolved and solid phase, which arises through a combination of Ba isotope fractionation during both precipitation and dissolution. Finally, I investigate the role of ion exchange in marine settings using co-located pore fluids and sedimented BaSO4. Modeling constrained by data from natural samples produce results that are consistent with the laboratory study, suggesting that this mode of isotopic fractionation impacts Ba isotopes in the environment and must be accounted for when applying Ba based climate proxies.
    Description: Funding for this work was provided by the National Science Foundation (OCE-2023456 & OCE-1827401), the Woods Hole Oceanographic Institution Ocean Ventures Fund, a National Science Foundation Graduate Research Fellowship (2017250048), and Woods Hole Oceanographic Institution.
    Keywords: Barium isotopes ; Geochemistry ; Paleoceanography
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemical Oceanography at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2022.
    Description: Coastal ecosystems provide key services that benefit human wellbeing yet are undergoing rapid degradation due to natural and anthropogenic pressures. This thesis seeks to understand how disturbances impact salt marsh and estuarine ecosystem functioning in order to refine their role in coastal ecosystem service delivery and predict future resilience. Salt marsh survival relative to sealevel rise increasingly relies on the accumulation and preservation of soil organic carbon (SOC). Firstly, I characterized SOC development and turnover in a New England salt marsh and found that salt marsh soils typically store marsh grass-derived compounds that are reworked over centuries-to-millennia. Next, I assessed how two common marsh disturbances – natural ponding and anthropogenic mosquito ditching – affect salt marsh carbon cycling and storage. Salt marsh ponds deepen through soil erosion and decomposition of long-buried marsh peat. Further, the SOC lost during pond development is not fully recouped once drained ponds are revegetated and virtually indistinguishable from the surrounding marsh. Mosquito ditches, which were installed in ~ 90% of New England salt marshes during the Great Depression, did not significantly alter marsh carbon storage. In Buzzards Bay, Massachusetts, a US National Estuary, we tested relationships among measures of estuarine water quality, recreational activity, and local socioeconomic conditions to understand how the benefits of cultural ecosystem services are affected by shifts in water quality associated with global change and anthropogenic activity. Over a 24-year period, water quality degradation coinciding with increases in Chlorophyll a is associated with declines in fishery abundance and cultural ecosystem service values ($0.08 – 0.67 million USD). In combination, incorporation of both anthropogenic and natural disturbances to coastal ecosystem functioning and service delivery can produce improved estimates of ecosystem service valuation for effective resource decision-making under future climate scenarios.
    Description: Funding for this work was provided by John D. and Catherine T. MacArthur Foundation (Grant no. 14-106159-000-CFP), National Science Foundation (OCE1233678), National Oceanic and Atmospheric Administration, National Oceanic and Atmospheric Administration – National Estuaries Research Reserve Collaborative (NA14OAR4170104 and NA- 14NOS4190145), Woods Hole Sea Grant (NA14OAR4170104), MIT Sea Grant (subaward number 5710004045), Ocean Ventures Fund, the Marine Policy Center Johnson Endowment, and Woods Hole Oceanographic Institution.
    Keywords: Salt marsh ; Geochemistry ; Carbon storage
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...