ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 125(2), (2020): e2019JC015400, doi:10.1029/2019JC015400.
    Description: One of the foci of the Forum for Artic Modeling and Observational Synthesis (FAMOS) project is improving Arctic regional ice‐ocean models and understanding of physical processes regulating variability of Arctic environmental conditions based on synthesis of observations and model results. The Beaufort Gyre, centered in the Canada Basin of the Arctic Ocean, is an ideal phenomenon and natural laboratory for application of FAMOS modeling capabilities to resolve numerous scientific questions related to the origin and variability of this climatologic freshwater reservoir and flywheel of the Arctic Ocean. The unprecedented volume of data collected in this region is nearly optimal to describe the state and changes in the Beaufort Gyre environmental system at synoptic, seasonal, and interannual time scales. The in situ and remote sensing data characterizing ocean hydrography, sea surface heights, ice drift, concentration and thickness, ocean circulation, and biogeochemistry have been used for model calibration and validation or assimilated for historic reconstructions and establishing initial conditions for numerical predictions. This special collection of studies contributes time series of the Beaufort Gyre data; new methodologies in observing, modeling, and analysis; interpretation of measurements and model output; and discussions and findings that shed light on the mechanisms regulating Beaufort Gyre dynamics as it transitions to a new state under different climate forcing.
    Description: We would like to thank all FAMOS participants (https://web.whoi.edu/famos/ and https://famosarctic.com/) and collaborators of the Beaufort Gyre Exploration project (https://www.whoi.edu/beaufortgyre) for their continued enthusiasm, creativity, and support during all stages of both projects. This research is supported by the National Science Foundation Office of Polar Programs (projects 1845877, 1719280, and 1604085). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. Arctic dynamic topography/geostrophic currents data were provided by the Centre for Polar Observation and Modelling, University College London (www.cpom.ucl.ac.uk/dynamic_topography; Armitage et al. (2016, 2017). The other data used in this paper are available at the NCAR/NCEP (https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html), NSIDC (https://nsidc.org/), NSF's Arctic data center (https://arcticdata.io/; Keywords for data search are “Beaufort Gyre”, “Krishfield” or “Proshutinsky”), and WHOI Beaufort Gyre exploration website (www.whoi.edu/beaufortgyre).
    Keywords: Beaufort Gyre ; Circulation ; Freshwater content ; Sea ice ; Ecosystems ; Hydrography
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Schultz, C., Doney, S. C., Hauck, J., Kavanaugh, M. T., & Schofield, O. Modeling phytoplankton blooms and inorganic carbon responses to sea-ice variability in the West Antarctic Peninsula. Journal of Geophysical Research: Biogeosciences, 126(4), (2021): e2020JG006227, https://doi.org/10.1029/2020JG006227.
    Description: The ocean coastal-shelf-slope ecosystem west of the Antarctic Peninsula (WAP) is a biologically productive region that could potentially act as a large sink of atmospheric carbon dioxide. The duration of the sea-ice season in the WAP shows large interannual variability. However, quantifying the mechanisms by which sea ice impacts biological productivity and surface dissolved inorganic carbon (DIC) remains a challenge due to the lack of data early in the phytoplankton growth season. In this study, we implemented a circulation, sea-ice, and biogeochemistry model (MITgcm-REcoM2) to study the effect of sea ice on phytoplankton blooms and surface DIC. Results were compared with satellite sea-ice and ocean color, and research ship surveys from the Palmer Long-Term Ecological Research (LTER) program. The simulations suggest that the annual sea-ice cycle has an important role in the seasonal DIC drawdown. In years of early sea-ice retreat, there is a longer growth season leading to larger seasonally integrated net primary production (NPP). Part of the biological uptake of DIC by phytoplankton, however, is counteracted by increased oceanic uptake of atmospheric CO2. Despite lower seasonal NPP, years of late sea-ice retreat show larger DIC drawdown, attributed to lower air-sea CO2 fluxes and increased dilution by sea-ice melt. The role of dissolved iron and iron limitation on WAP phytoplankton also remains a challenge due to the lack of data. The model results suggest sediments and glacial meltwater are the main sources in the coastal and shelf regions, with sediments being more influential in the northern coast.
    Description: C. Schultz, S. C. Doney, M. T. Kavanaugh, and O. Schofield acknowledge support by the US National Science Foundation (Grant no. PLR-1440435), and C. Schultz and S. C. Doney acknowledge support from the University of Virginia. This research has also received funding from the Helmholtz Young Investigator Group Marine Carbon and Ecosystem Feedbacks in the Earth System (MarESys), Grant number VH-NG-1301.
    Keywords: Air-sea fluxes ; Biogeochemical modeling ; Inorganic carbon cycle ; Phytoplankton bloom ; Sea ice ; West Antarctic Peninsula
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 125(4), (2020): e2020JC016046, doi:10.1029/2020JC016046.
    Description: Momentum input from westerly winds blowing over the Southern Ocean can be modulated by mesoscale surface currents and result in changes in large‐scale ocean circulation. Here, using an eddy‐resolving 1/20 degree ocean model configured near Drake Passage, we evaluate the impact of current‐wind interaction on vertical processes. We find a reduction in momentum input from the wind, reduced eddy kinetic energy, and a modification of Ekman pumping rates. Wind stress curl resulting from current‐wind interaction leads to net upward motion, while the nonlinear Ekman pumping term associated with horizontal gradients of relative vorticity induces net downward motion. The spatially averaged mixed layer depth estimated using a density criteria is shoaled slightly by current‐wind interaction. Current‐wind interaction, on the other hand, enhances the stratification in the thermocline below the mixed layer. Such changes have the potential to alter biogeochemical processes including nutrient supply, biological productivity, and air‐sea carbon dioxide exchange.
    Description: The MITgcm can be obtained online (http://mitgcm.org). The geostrophic current product derived from the sea level anomaly can be downloaded in the Copernicus Marine and Environment Monitoring Service of Ssalto/Duacs gridded “allsat” series and along‐track Sea Level Anomalies, Absolute Dynamic Topographies and Geostrophic velocities over the Global Ocean, Mediterranean Sea, Black Sea, European Seas and Acrtic Ocean areas, in Delayed‐Time and in Near‐Real‐Time. Resources supporting this work were provided by the NASA High‐End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center with the award number SMD‐15‐5752. H. S., J. M., and D. J. M. were supported by the NSF MOBY project (OCE‐1048926 and OCE‐1048897). H. S. acknowledges the support by National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF‐2019R1C1C1003663) and Yonsei University Research Fund of 2018‐22‐0053. D. J. M. also gratefully acknowledges NSF and NASA support, along with the Holger W. Jannasch and Columbus O'Donnell Iselin shared chairs for Excellence in Oceanography. H. Seo acknowledges the support from the ONR (N00014‐17‐1‐2398), NOAA (NA10OAR4310376), and the Andrew W. Mellon Foundation Endowed Fund for Innovative Research at WHOI. We also thank two anonymous referees whose comments significantly improved the presentation of results.
    Description: 2020-09-17
    Keywords: Southern Ocean ; Eddy-wind interaction ; Ekman pumping ; Stratification ; Eddy kinetic energy ; Mixed layer depth
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 35(5), (2021): e2020GB006706, https://doi.org/10.1029/2020GB006706.
    Description: The Southern Ocean plays a critical role in regulating global uptake of atmospheric CO2. Trace elements like iron (Fe), cobalt (Co), and manganese (Mn) have been shown to modulate this primary productivity. Despite limited data, the vertical profiles for Mn, Fe, and Co in the Ross Sea show no evidence of scavenging, as typically observed in oceanic sites. This was previously attributed to low-particle abundance and/or by mixing rates exceeding scavenging rates. Scavenging of some trace metals such as cobalt (Co) is thought to be largely governed by Mn (oxyhydr)oxides, assumed to be the main component of particulate Mn (pMn). However, our data show that pMn has an average oxidation state below 3 and with nondetectable Mn oxides. In addition, soluble Co profiles show no evidence of scavenging and Co uptake measurements show little Co uptake in the euphotic zone and low/no scavenging at depth. Instead, high concentrations of dissolved Mn (dMn, up to 90 nM), which is primarily complexed as Mn(III)-L (up to 100%), are observed. Average dMn concentrations (10 ± 14 nM) are highest in bottom and surface waters. Manganese sources may include sediments and sea-ice melt, as elevated dMn was measured in sea ice (12 nM) compared to its surrounding waters (3 nM), and sea ice dMn was 97% Mn(III)-L. We contend that the lack of Co scavenging in the Ross Sea is due to a unique Mn redox cycle that favors the stabilization of Mn(III)-complexes at the expense of Mn oxide particle formation.
    Description: The authors acknowledge support from the NSF 1643684 (MS), NSF 1644073 (GRD), NSF OCE-1355720 (CMH), and the Woods Hole Oceanographic Institution Post-Doctoral Scholarship (VEO). The Stanford Synchrotron Radiation Lightsource was utilized in this study. Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515.
    Description: 2021-10-30
    Keywords: Cobalt ; Manganese ; Redox ; Ross sea ; Scavenging ; Southern Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 48(8), (2021): e2020GL089471, https://doi.org/10.1029/2020GL089471.
    Description: Major gaps exist in our understanding of the pathways between internal wave generation and breaking in the Southern Ocean, with important implications for the distribution of internal wave-driven mixing, the sensitivity of ocean mixing rates and patterns to changes in the ocean environment, and the necessary ingredients of mixing parameterizations. Here we assess the dominant processes in internal wave evolution by characterizing wave and mesoscale flow scales based on full-depth in situ measurements in a Southern Ocean mixing hot spot and a ray tracing calculation. The exercise highlights the importance of Antarctic Circumpolar Current jets as a dominant influence on internal wave life cycles through advection, the modification of wave characteristics via wave-mean flow interactions, and the set-up of critical layers for both upward- and downward-propagating waves. Our findings suggest that it is important to represent mesoscale flow impacts in parameterizations of internal wave-driven mixing in the Southern Ocean.
    Description: The SOFine project was funded by the UK Natural Environmental Research Council (NERC) (grant NE/G001510/1). S. Waterman is currently supported by the National Science and Engineering Research Council of Canada (NSERC) Discovery Grant Program (NSERC-2020-05799). A. Meyer acknowledges current support from the ARC Centre of Excellence for Climate Extremes (CE170100023) and previous support from the joint CSIRO-University of Tasmania Quantitative Marine Science (QMS) program. A. N. Garabato acknowledges the support of the Royal Society and the Wolfson Foundation.
    Keywords: Internal waves ; Internal wave-driven turbulent mixing ; Internal wave-mesoscale flow interactions ; Southern Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 127(5), (2022): e2021JC018056, https://doi.org/10.1029/2021jc018056.
    Description: As Arctic sea ice declines, wind energy has increasing access to the upper ocean, with potential consequences for ocean mixing, stratification, and turbulent heat fluxes. Here, we investigate the relationships between internal wave energy, turbulent dissipation, and ice concentration and draft using mooring data collected in the Beaufort Sea during 2003–2018. We focus on the 50–300 m depth range, using velocity and CTD records to estimate near-inertial shear and energy, a finescale parameterization to infer turbulent dissipation rates, and ice draft observations to characterize the ice cover. All quantities varied widely on monthly and interannual timescales. Seasonally, near-inertial energy increased when ice concentration and ice draft were low, but shear and dissipation did not. We show that this apparent contradiction occurred due to the vertical scales of internal wave energy, with open water associated with larger vertical scales. These larger vertical scale motions are associated with less shear, and tend to result in less dissipation. This relationship led to a seasonality in the correlation between shear and energy. This correlation was largest in the spring beneath full ice cover and smallest in the summer and fall when the ice had deteriorated. When considering interannually averaged properties, the year-to-year variability and the short ice-free season currently obscure any potential trend. Implications for the future seasonal and interannual evolution of the Arctic Ocean and sea ice cover are discussed.
    Description: This work was supported by the Postdoctoral Scholar Program at Woods Hole Oceanographic Institution, with funding provided by the Weston Howland Jr. Postdoctoral Scholarship. S. T. Cole was supported by Office of Naval Research grant N00014-16-1-2381.
    Description: 2022-10-14
    Keywords: Arctic ; Internal waves ; Mixing ; Sea ice ; Turbulence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-10-21
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Haumann, F. A., Moorman, R., Riser, S. C., Smedsrud, L. H., Maksym, T., Wong, A. P. S., Wilson, E. A., Drucker, R., Talley, L. D., Johnson, K. S., Key, R. M., & Sarmiento, J. L. Supercooled Southern Ocean waters. Geophysical Research Letters, 47(20), (2020): e2020GL090242, doi:10.1029/2020GL090242.
    Description: In cold polar waters, temperatures sometimes drop below the freezing point, a process referred to as supercooling. However, observational challenges in polar regions limit our understanding of the spatial and temporal extent of this phenomenon. We here provide observational evidence that supercooled waters are much more widespread in the seasonally ice‐covered Southern Ocean than previously reported. In 5.8% of all analyzed hydrographic profiles south of 55°S, we find temperatures below the surface freezing point (“potential” supercooling), and half of these have temperatures below the local freezing point (“in situ” supercooling). Their occurrence doubles when neglecting measurement uncertainties. We attribute deep coastal‐ocean supercooling to melting of Antarctic ice shelves and surface‐induced supercooling in the seasonal sea‐ice region to wintertime sea‐ice formation. The latter supercooling type can extend down to the permanent pycnocline due to convective sinking plumes—an important mechanism for vertical tracer transport and water‐mass structure in the polar ocean.
    Description: F. A. H. was supported by the Swiss National Science Foundation (SNSF; Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen Forschung) grant numbers P2EZP2_175162 and P400P2_186681. This work was supported by the National Science Foundation (NSF) Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) Project under the NSF Award PLR‐1425989. R. M. would like to thank the National Oceanic and Atmospheric Administration (NOAA) GFDL for mentorship and computational support. S. R. was also supported by the U.S. Argo grant and NOAA grant NA15OAR4320063 to the University of Washington. L. H. S. thanks the Fulbright Foundation for the U.S.‐Norway Arctic Chair grant. We are deeply thankful to the large number of scientists, technicians, and funding agencies contributing to these databases, being responsible for the collection and quality control of the high‐quality data that form the basis of this work. We thank Josh Plant for his initial notification on very low temperatures observed in some of the float profiles. We would also like to thank the students, teachers, and schools who are participating in the SOCCOM Adopt‐a‐Float program. Four of the floats used in this study were adopted and have a clear signal of supercooling. These participants are listed in Table S1.
    Keywords: Southern Ocean ; Supercooling ; Sea ice ; Ice shelf ; Observations ; Convection
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 126(10), (2021): e2021JC017537, https://doi.org/10.1029/2021JC017537.
    Description: Mixed-layer dynamics exert a first order control on nutrient and light availability for phytoplankton. In this study, we examine the influence of mixed-layer dynamics on net community production (NCP) in the Southern Ocean on intra-seasonal, seasonal, interannual, and decadal timescales, using biogeochemical Argo floats and satellite-derived NCP estimates during the period from 1997 to 2020. On intraseasonal timescales, the shoaling of the mixed layer is more likely to enhance NCP in austral spring and winter, suggesting an alleviation of light limitation. As expected, NCP generally increases with light availability on seasonal timescales. On interannual timescales, NCP is correlated with mixed layer depth (MLD) and mixed-layer-averaged photosynthetically active radiation (PAR) in austral spring and winter, especially in regions with deeper mixed layers. Though recent studies have argued that winter MLD controls the subsequent growing season's iron and light availability, the limited number of Argo float observations contemporaneous with our satellite observations do not show a significant correlation between NCP and the previous-winter's MLD on interannual timescales. Over the 1997–2020 period, we observe regional trends in NCP (e.g., increasing around S. America), but no trend for the entire Southern Ocean. Overall, our results show that the dependence of NCP on MLD is a complex function of timescales.
    Description: Work was supported by NSF OPP-1043339 to N.Cassar and NASA NNX13AC94G to M. S. Lozier. Z. Li was supported by a NASA Earth and Space Science Fellowship (Grant No. NNX13AN85H) and the Postdoctoral Scholarship Program at Woods Hole Oceanographic Institution.
    Description: 2022-03-21
    Keywords: Mixed layer depth ; Net community production ; Southern Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-19
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography and Paleoclimatology 36(9), (2021): e2021PA004226, https://doi.org/10.1029/2021PA004226.
    Description: The deep ocean has long been recognized as the reservoir that stores the carbon dioxide (CO2) removed from the atmosphere during Pleistocene glacial periods. The removal of glacial atmospheric CO2 into the ocean is likely modulated by an increase in the degree of utilization of macronutrients at the sea surface and enhanced storage of respired CO2 in the deep ocean, known as enhanced efficiency of the biological pump. Enhanced biological pump efficiency during glacial periods is most easily documented in the deep ocean using proxies for oxygen concentrations, which are directly linked to respiratory CO2 levels. We document the enhanced storage of respired CO2 during the Last Glacial Maximum (LGM) in the Pacific Southern Ocean and deepest Equatorial Pacific using records of deglacial authigenic manganese, which form as relict peaks during increases in bottom water oxygen (BWO) concentration. These peaks are found at depths and regions where other oxygenation histories have been ambiguous, due to diagenetic alteration of authigenic uranium, another proxy for BWO. Our results require that the entirety of the abyssal Pacific below approximately 1,000 m was enriched in respired CO2 and depleted in oxygen during the LGM. The presence of authigenic Mn enrichment in the deep Equatorial Pacific for each of the last five deglaciations suggests that the storage of respired CO2 in the deep ocean is a ubiquitous feature of late-Pleistocene ice ages.
    Description: This work was performed with support from the National Science Foundation (NSF) over about 30 years. The TT013 and NBP9802 cores were collected during the U.S. JGOFS program. Their collection and analyses were supported by NSF OCE-9022301 and OPP-95303398 to R. F. Anderson, and NSF OCE 9301097 to R. W. Murray. Coring and radiocarbon analyses on NBP1702 were funded by NSF OPP-1542962. XRF analysis on NBP9802 and NBP1702 cores, as well as additional radiocarbon measurements, was funded by an LDEO Climate Center Grant to F. J. Pavia.
    Description: 2022-02-17
    Keywords: Manganese ; Southern Ocean ; Pacific Ocean ; Respired carbon ; Bottom water oxygen ; Deglaciations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-27
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 126(12),(2021): e2021JC017884, https://doi.org/10.1029/2021JC017884.
    Description: The Southern Ocean, an important region for the uptake of anthropogenic carbon dioxide (CO2), features strong surface currents due to substantial mesoscale meanders and eddies. These features interact with the wind and modify the momentum transfer from the atmosphere to the ocean. Although such interactions are known to reduce momentum transfer, their impact on air-sea carbon exchange remains unclear. Using a 1/20° physical-biogeochemical coupled ocean model, we examined the impact of the current-wind interaction on the surface carbon concentration and the air-sea carbon exchange in the Southern Ocean. The current-wind interaction decreased winter partial pressure of CO2 (pCO2) at the ocean surface mainly south of the northern subantarctic front. It also reduced pCO2 in summer, indicating enhanced uptake, but not to the same extent as the winter loss. Consequently, the net outgassing of CO2 was found to be reduced by approximately 17% when including current-wind interaction. These changes stem from the combined effect of vertical mixing and Ekman divergence. A budget analysis of dissolved inorganic carbon (DIC) revealed that a weakening of vertical mixing by current-wind interaction reduces the carbon supply from below, and particularly so in winter. The weaker wind stress additionally lowers the subsurface DIC concentration in summer, which can affect the vertical diffusive flux of carbon in winter. Our study suggests that ignoring current-wind interactions in the Southern Ocean can overestimate winter CO2 outgassing.
    Description: The Southern Ocean, an important region for the uptake of anthropogenic carbon dioxide (CO2), features strong surface currents due to substantial mesoscale meanders and eddies. These features interact with the wind and modify the momentum transfer from the atmosphere to the ocean. Although such interactions are known to reduce momentum transfer, their impact on air-sea carbon exchange remains unclear. Using a 1/20° physical-biogeochemical coupled ocean model, we examined the impact of the current-wind interaction on the surface carbon concentration and the air-sea carbon exchange in the Southern Ocean. The current-wind interaction decreased winter partial pressure of CO2 (pCO2) at the ocean surface mainly south of the northern subantarctic front. It also reduced pCO2 in summer, indicating enhanced uptake, but not to the same extent as the winter loss. Consequently, the net outgassing of CO2 was found to be reduced by approximately 17% when including current-wind interaction. These changes stem from the combined effect of vertical mixing and Ekman divergence. A budget analysis of dissolved inorganic carbon (DIC) revealed that a weakening of vertical mixing by current-wind interaction reduces the carbon supply from below, and particularly so in winter. The weaker wind stress additionally lowers the subsurface DIC concentration in summer, which can affect the vertical diffusive flux of carbon in winter. Our study suggests that ignoring current-wind interactions in the Southern Ocean can overestimate winter CO2 outgassing.
    Description: 2022-05-15
    Keywords: Southern Ocean ; Current-Wind interaction ; CO2 flux ; Air-Sea interaction ; Biogeochemistry ; DIC
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...