ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Xu, X., Li, G., Li, C., Zhang, J., Wang, Q., Simmons, D. K., Chen, X., Wijesena, N., Zhu, W., Wang, Z., Wang, Z., Ju, B., Ci, W., Lu, X., Yu, D., Wang, Q., Aluru, N., Oliveri, P., Zhang, Y. E., Martindale, M. Q., & Liu, J. Evolutionary transition between invertebrates and vertebrates via methylation reprogramming in embryogenesis. National Science Review, 6(5), (2019):993-1003, doi:10.1093/nsr/nwz064.
    Description: Major evolutionary transitions are enigmas, and the most notable enigma is between invertebrates and vertebrates, with numerous spectacular innovations. To search for the molecular connections involved, we asked whether global epigenetic changes may offer a clue by surveying the inheritance and reprogramming of parental DNA methylation across metazoans. We focused on gametes and early embryos, where the methylomes are known to evolve divergently between fish and mammals. Here, we find that methylome reprogramming during embryogenesis occurs neither in pre-bilaterians such as cnidarians nor in protostomes such as insects, but clearly presents in deuterostomes such as echinoderms and invertebrate chordates, and then becomes more evident in vertebrates. Functional association analysis suggests that DNA methylation reprogramming is associated with development, reproduction and adaptive immunity for vertebrates, but not for invertebrates. Interestingly, the single HOX cluster of invertebrates maintains unmethylated status in all stages examined. In contrast, the multiple HOX clusters show dramatic dynamics of DNA methylation during vertebrate embryogenesis. Notably, the methylation dynamics of HOX clusters are associated with their spatiotemporal expression in mammals. Our study reveals that DNA methylation reprogramming has evolved dramatically during animal evolution, especially after the evolutionary transitions from invertebrates to vertebrates, and then to mammals.
    Description: This work was supported by the National Key Research and Development Program of China (2018YFC1003303), the Strategic Priority Research Program of the CAS (XDB13040200), the National Natural Science Foundation of China (91519306, 31425015), the Youth Innovation Promotion Association of the CAS and the Key Research Program of Frontier Sciences, CAS (QYZDY-SSW-SMC016).
    Keywords: DNA methylation ; evolution ; development ; reprogramming
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-27
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in da Fonseca, R. R., Couto, A., Machado, A. M., Brejova, B., Albertin, C. B., Silva, F., Gardner, P., Baril, T., Hayward, A., Campos, A., Ribeiro, A. M., Barrio-Hernandez, I., Hoving, H. J., Tafur-Jimenez, R., Chu, C., Frazao, B., Petersen, B., Penaloza, F., Musacchia, F., Alexander, G. C., Osorio, H., Winkelmann, I., Simakov, O., Rasmussen, S., Rahman, M. Z., Pisani, D., Vinther, J., Jarvis, E., Zhang, G., Strugnell, J. M., Castro, L. F. C., Fedrigo, O., Patricio, M., Li, Q., Rocha, S., Antunes, A., Wu, Y., Ma, B., Sanges, R., Vinar, T., Blagoev, B., Sicheritz-Ponten, T., Nielsen, R., & Gilbert, M. T. P. A draft genome sequence of the elusive giant squid, Architeuthis dux. Gigascience, 9(1), (2020): giz152. doi: 10.1093/gigascience/giz152.
    Description: Background: The giant squid (Architeuthis dux; Steenstrup, 1857) is an enigmatic giant mollusc with a circumglobal distribution in the deep ocean, except in the high Arctic and Antarctic waters. The elusiveness of the species makes it difficult to study. Thus, having a genome assembled for this deep-sea–dwelling species will allow several pending evolutionary questions to be unlocked. Findings: We present a draft genome assembly that includes 200 Gb of Illumina reads, 4 Gb of Moleculo synthetic long reads, and 108 Gb of Chicago libraries, with a final size matching the estimated genome size of 2.7 Gb, and a scaffold N50 of 4.8 Mb. We also present an alternative assembly including 27 Gb raw reads generated using the Pacific Biosciences platform. In addition, we sequenced the proteome of the same individual and RNA from 3 different tissue types from 3 other species of squid (Onychoteuthis banksii, Dosidicus gigas, and Sthenoteuthis oualaniensis) to assist genome annotation. We annotated 33,406 protein-coding genes supported by evidence, and the genome completeness estimated by BUSCO reached 92%. Repetitive regions cover 49.17% of the genome. Conclusions: This annotated draft genome of A. dux provides a critical resource to investigate the unique traits of this species, including its gigantism and key adaptations to deep-sea environments.
    Description: R.R.F. thanks the Villum Fonden for grant VKR023446 (Villum Fonden Young Investigator Grant), the Portuguese Science Foundation (FCT) for grant PTDC/MAR/115347/2009; COMPETE-FCOMP-01-012; FEDER-015453, Marie Curie Actions (FP7-PEOPLE-2010-IEF, Proposal 272927), and the Danish National Research Foundation (DNRF96) for its funding of the Center for Macroecology, Evolution, and Climate. H.O. thanks the Rede Nacional de Espectrometria de Massa, ROTEIRO/0028/2013, ref. LISBOA-01-0145-FEDER-022125, supported by COMPETE and North Portugal Regional Operational Programme (Norte2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). A.C. thanks FCT for project UID/Multi/04423/2019. M.P. acknowledges the support from the Wellcome Trust (grant number WT108749/Z/15/Z) and the European Molecular Biology Laboratory. M.P.T.G. thanks the Danish National Research Foundation for its funding of the Center for GeoGenetics (grant DNRF94) and Lundbeck Foundation for grant R52–5062 on Pathogen Palaeogenomics. S.R. was supported by the Novo Nordisk Foundation grant NNF14CC0001. A.H. is supported by a Biotechnology and Biological Sciences Research Council David Phillips Fellowship (fellowship reference: BB/N020146/1). T.B. is supported by the Biotechnology and Biological Sciences Research Council-funded South West Biosciences Doctoral Training Partnership (training grant reference BB/M009122/1). This work was partially funded by the Lundbeck Foundation (R52-A4895 to B.B.). H.J.T.H. was supported by the David and Lucile Packard Foundation, the Netherlands Organization for Scientific Research (#825.09.016), and currently by the Deutsche Forschungsgemeinschaft (DFG) under grant HO 5569/2-1 (Emmy Noether Junior Research Group). T.V. and B. Brejova were supported by grants from the Slovak grant agency VEGA (1/0684/16, 1/0458/18). F.S. was supported by a PhD grant (SFRH/BD/126560/2016) from FCT. A.A. was partly supported by the FCT project PTDC/CTA-AMB/31774/2017. C.C. and Y.W. are partly supported by grant IIS-1526415 from the US National Science Foundation. Computation for the work described in this article was partially supported by the DeiC National Life Science Supercomputer at DTU.
    Keywords: Cephalopod ; Invertebrate ; Genome assembly
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2020. This is the author's version of the work. It is posted here by permission of Oxford University Press for personal use, not for redistribution. The definitive version was published in Toxicological Sciences (2020): kfaa158, doi:10.1093/toxsci/kfaa158.
    Description: Chemical modifications of proteins, DNA, and RNA moieties play critical roles in regulating gene expression. Emerging evidence suggests the RNA modifications (epitranscriptomics) have substantive roles in basic biological processes. One of the most common modifications in mRNA and noncoding RNAs is N6-methyladenosine (m6A). In a subset of mRNAs, m6A sites are preferentially enriched near stop codons, in 3′ UTRs, and within exons, suggesting an important role in the regulation of mRNA processing and function including alternative splicing and gene expression. Very little is known about the effect of environmental chemical exposure on m6A modifications. As many of the commonly occurring environmental contaminants alter gene expression profiles and have detrimental effects on physiological processes, it is important to understand the effects of exposure on this important layer of gene regulation. Hence, the objective of this study was to characterize the acute effects of developmental exposure to PCB126, an environmentally relevant dioxin-like PCB, on m6A methylation patterns. We exposed zebrafish embryos to PCB126 for 6 h starting from 72 h post fertilization and profiled m6A RNA using methylated RNA immunoprecipitation followed by sequencing (MeRIP-seq). Our analysis revealed 117 and 217 m6A peaks in the DMSO and PCB126 samples (false discovery rate 5%), respectively. The majority of the peaks were preferentially located around the 3′ UTR and stop codons. Statistical analysis revealed 15 m6A marked transcripts to be differentially methylated by PCB126 exposure. These include transcripts that are known to be activated by AHR agonists (eg, ahrra, tiparp, nfe2l2b) as well as others that are important for normal development (vgf, cebpd, sned1). These results suggest that environmental chemicals such as dioxin-like PCBs could affect developmental gene expression patterns by altering m6A levels. Further studies are necessary to understand the functional consequences of exposure-associated alterations in m6A levels.
    Description: National Institute of Health National Institute of Environmental Health Sciences Outstanding New Environmental Scientist (NIH R01ES024915 to N.A.); Woods Hole Center for Oceans and Human Health [National Institutes of Health (NIH) (Grant P01ES028938); National Science Foundation (Grant OCE-1840381) to M. E. Hahn, J. J. Stegeman, N.A., and S.K.].
    Description: 2021-10-16
    Keywords: dioxin-like PCBs ; development ; zebrafish ; epitranscriptomics ; m6A ; MeRIP
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...