ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Earthquakes  (3)
  • Methane  (3)
  • Elsevier  (5)
  • Wiley  (1)
  • Institute of Electrical and Electronics Engineers (IEEE)
  • Springer Science + Business Media
  • 2020-2023  (6)
  • 1955-1959
  • 1
    Publication Date: 2022-06-09
    Description: Near-continuous monitoring both of gas emissions (CO2, CH4 and H2S) and of water temperature at Santa Venera al Pozzo thermal springs (SE foot of Mt. Etna volcano, Sicily, Italy) was conducted from December 2017 to April 2019, using a novel and cheaper Chromatography Monitoring System (CMS) coupled with a water temperature sensor. The results showed methane as predominant gas and temporal changes in gas concentrations that were in part due to daily fluctuations, which caused small amplitude variations, and in part due to non-environmental causes. These latter were correlated with the occurrence of strong earthquakes and slow tectonic events related to magmatic intrusions, but not with input of magmatic gases into the thermal aquifer, given the nonmagmatic origin of all monitored gases. Methane spikes were observed during many volcano-tectonic events and call for a deep source of this gas. H2S was detected only during the strongest local tectonic events, including a Mw 4.9 earthquake, suggesting that this gas has a common origin as CH4 (i.e., mixing between microbial and thermogenic gas), but it is released only when tectonic stress is applied for sufficiently long periods as to cause H2S oversaturation in the hydrothermal aquifer. Water temperature decreases were also observed immediately after the two strongest earthquakes in the area, which helped us produce a comprehensive model to explain the observed geochemical variations. Our approach allowed revealing the great sensitivity of gases such as CH4 and especially H2S to tectonic stress, thus making them valuable indicators of impending strong tectonic or volcanotectonic events.
    Description: Published
    Description: 229388
    Description: 9T. Geochimica dei fluidi applicata allo studio e al monitoraggio di aree sismiche
    Description: JCR Journal
    Keywords: Earthquakes ; Volcanic activity ; Geothermal systems ; Fluids ; Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sanders‐DeMott, R., Eagle, M., Kroeger, K., Wang, F., Brooks, T., Suttles, J., Nick, S., Mann, A., & Tang, J. Impoundment increases methane emissions in Phragmites‐invaded coastal wetlands. Global Change Biology, 28(15), (2022): 4539– 4557. https://doi.org/10.1111/gcb.16217.
    Description: Saline tidal wetlands are important sites of carbon sequestration and produce negligible methane (CH4) emissions due to regular inundation with sulfate-rich seawater. Yet, widespread management of coastal hydrology has restricted tidal exchange in vast areas of coastal wetlands. These ecosystems often undergo impoundment and freshening, which in turn cause vegetation shifts like invasion by Phragmites, that affect ecosystem carbon balance. Understanding controls and scaling of carbon exchange in these understudied ecosystems is critical for informing climate consequences of blue carbon restoration and/or management interventions. Here, we (1) examine how carbon fluxes vary across a salinity gradient (4–25 psu) in impounded and natural, tidally unrestricted Phragmites wetlands using static chambers and (2) probe drivers of carbon fluxes within an impounded coastal wetland using eddy covariance at the Herring River in Wellfleet, MA, United States. Freshening across the salinity gradient led to a 50-fold increase in CH4 emissions, but effects on carbon dioxide (CO2) were less pronounced with uptake generally enhanced in the fresher, impounded sites. The impounded wetland experienced little variation in water-table depth or salinity during the growing season and was a strong CO2 sink of −352 g CO2-C m−2 year−1 offset by CH4 emission of 11.4 g CH4-C m−2 year−1. Growing season CH4 flux was driven primarily by temperature. Methane flux exhibited a diurnal cycle with a night-time minimum that was not reflected in opaque chamber measurements. Therefore, we suggest accounting for the diurnal cycle of CH4 in Phragmites, for example by applying a scaling factor developed here of ~0.6 to mid-day chamber measurements. Taken together, these results suggest that although freshened, impounded wetlands can be strong carbon sinks, enhanced CH4 emission with freshening reduces net radiative balance. Restoration of tidal flow to impounded ecosystems could limit CH4 production and enhance their climate regulating benefits.
    Description: This project was supported by USGS-NPS Natural Resources Preservation Program #2021-07, U.S. Geological Survey Coastal & Marine Hazards and Resources Program and the USGS Land Change Science Program's LandCarbon program, and NOAA National Estuarine Research Reserve Science Collaborative NA14NOS4190145. R Sanders-DeMott was supported by a USGS Mendenhall Fellowship and partnership with Restore America's Estuaries.
    Keywords: Blue carbon ; Coastal wetland ; Dike ; Eddy covariance ; Impoundment ; Methane ; Net ecosystem exchange ; Phragmites ; Restoration ; Static chambers
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-06-09
    Description: Young and tectonically active chains like the Central Apennines (Italy) are featured by high structural complexity as a result of the overprint of subsequent deformational stages, making interpretation of seismotectonics challenging. The Central Apennines are characterized by the stacking of tectono-sedimentary units organized in thrust sheets. However, extensional tectonics is currently affecting the axial sector of the thrust belt, mostly expressing in extensional earthquakes. Using a large subsurface dataset acquired for hydrocarbon exploration in the region struck by the 2016–2017 Central Italy seismic sequence, we built a comprehensive 3D geological model and compared it with the seismicity. The model primarily shows a series of thrusts developed during the Miocene-Pliocene Apennines orogenesis and inherited normal faults developed during the Mesozoic extensional phase and the Miocene foreland flexural process. These normal faults were segmented and transported within the thrust sheets, and sometimes they still show a clear surface expression. The succession of tectonic stages resulted in a widespread reactivation of inherited structures, sometimes inverting their kinematics with different styles and rates, and disarticulating pre-existing configurations. Such evolution has a strong impact on the seismicity observed in the area, as demonstrated by some examples that show how the seismicity is aligned on segments of inherited faults, both compressional and extensional. Their reactivation can be explained by their favorable orientation within the current extensional stress field. Results feed the debate about the seismogenic potential of faults identified both at depth and surface, which can impact the seismic hazard of the Apennines.
    Description: Published
    Description: 228861
    Description: 1T. Struttura della Terra
    Description: 2T. Deformazione crostale attiva
    Description: 4T. Sismicità dell'Italia
    Description: JCR Journal
    Keywords: Normal faults ; Thrust sheets ; Inherited faults ; Earthquakes ; Central Apennines ; 3D geological model ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Lin, H. T., Hsieh, C. C., Repeta, D. J., & Rappé, M. S. Sampling of basement fluids via circulation obviation retrofit kits (CORKs) for dissolved gases, fluid fixation at the seafloor, and the characterization of organic carbon. Methodsx, 7, (2020): 101033, doi:10.1016/j.mex.2020.101033.
    Description: The advanced instrumented GeoMICROBE sleds (Cowen et al., 2012) facilitate the collection of hydrothermal fluids and suspended particles in the subseafloor (basaltic) basement through Circulation Obviation Retrofit Kits (CORKs) installed within boreholes of the Integrated Ocean Drilling Program. The main components of the GeoMICROBE can be converted into a mobile pumping system (MPS) that is installed on the front basket of a submersible or remotely-operated-vehicle (ROV). Here, we provide details of a hydrothermal fluid-trap used on the MPS, through which a gastight sampler can withdraw fluids. We also applied the MPS to demonstrate the value of fixing samples at the seafloor in order to determine redox-sensitive dissolved iron concentrations and speciation measurements. To make the best use of the GeoMICROBE sleds, we describe a miniature and mobile version of the GeoMICROBE sled, which permits rapid turn-over and is relatively easy for preparation and operation. Similar to GeoMICROBE sleds, the Mobile GeoMICROBE (MGM) is capable of collecting fluid samples, filtration of suspended particles, and extraction of organics. We validate this approach by demonstrating the seafloor extraction of hydrophobic organics from a large volume (247L) of hydrothermal fluids. • We describe the design of a hydrothermal fluid-trap for use with a gastight sampler, as well as the use of seafloor fixation, through ROV- or submersible assisted mobile pumping systems. • We describe the design of a Mobile GeoMICROBE (MGM) that enhances large volume hydrothermal fluid sampling, suspended particle filtration, and organic matter extraction on the seafloor. • We provide an example of organic matter extracted and characterized from hydrothermal fluids via a MGM.
    Description: We dedicate this work to Dr. James P. Cowen, who had envisioned and constructed the integrated instrumentation, GeoMICROBE, to monitor the sub-basement biosphere. We thank the chief scientists, captains, crews, and science teams on board R/V Atlantis cruises AT15-35, AT15-51, AT15-66, AT18-07, MSM20-5, AT26-03, and AT26-18, and the pilots and crews of ROV Jason II and HOV Alvin. We thank our student assistants, Natalie Hamada, Kathryn Hu, Ryan Matzumoto, Everette Omori, and Fan-Chieh Chuang. This work was supported by the National Science Foundation-Microbial Observatory Project (NSF-MCB06-04014 to J. P. Cowen), Center for Dark Energy Biosphere Investigations (C-DEBI; NSF award OCE-0939564 to M. S. Rappé), NSF award OCE-1260723 (to M. S. Rappé), and the Ministry of Science and Technology of Taiwan award (MOST 105-2119-M-002-034, MOST 107-2611-M-002-002, MOST 108-2611-M-002-006, and MOST109-2611-M-002-008 to H.-T. Lin). Ministry of Education (MOE) Republic of China (Taiwan) 109L892601 to H.-T. Lin. NSF award OCE-1634080 (to D. J. Repeta), the Simons Foundation-Simons Collaboration on Ocean Processes and Ecology (SCOPE) award 329108 (to D. J. Repeta), the Gordon and Betty Moore Foundation award 6000 (to D. J. Repeta). This paper is SOEST contribution number 11121, HIMB contribution 1804 and C-DEBI contribution number 543.
    Keywords: GeoMICROBE ; Hydrothermal fluid ; Crustal fluid ; Mobile pumping system ; Helium ; Methane ; Dissolved organic matter ; Extraction and preconcentration ; Deep subseafloor
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-12-01
    Description: An accurate survey of old and new datasets allowed us to probe the nature and role of fluids in the seismogenic processes of the Apennines mountain range in Italy. New datasets include the 1985–2021 instrumented seismicity catalog, the computed seismogenic thickness, and geodetic velocities and strains, whereas data from the literature comprise focal mechanism solutions, CO2 release, Moho depth, tomographic seismic velocities, heat flow and Bouguer gravity anomalies. Most of the inspected datasets highlight differences between the western and eastern domains of the Apennines, while the transition zone is marked by high geodetic strain, prevailing uplift at the surface and high seismic release, and spatially corresponds with the overlapping Tyrrhenian and Adriatic Mohos. Published tomographic models suggest the presence of a large hot asthenospheric mantle wedge which intrudes beneath the western side of the Apennines and disappears at the southern tip of the southern Apennines. This wedge modulates the thermal structure and rheology of the overlying crust as well as the melting of carbonate-rich sediments of the subducting Adriatic lithosphere. As a result, CO2-rich fluids of mantle-origin have been recognized in association with the occurrence of destructive seismic sequences in the Apennines. The stretched western domain of the Apennines is characterized by a broad pattern of emissions from CO2-rich fluids that vanishes beneath the axial belt of the chain, where fluids are instead trapped within crustal overpressurized reservoirs, favoring their involvement in the evolution of destructive seismic sequences in that region. In the Apennines, areas with high mantle He are associated with different degrees of metasomatism of the mantle wedge from north to south. Beneath the chain, the thickness and permeability of the crust control the formation of overpressurized fluid zones at depth and the seismicity is favored by extensional faults that act as high permeability pathways. This multidisciplinary study aims to contribute to our understanding of the fluid-related mechanisms of earthquake preparation, nucleation and evolution encouraging a multiparametric monitoring system of different geophysical and geochemical observables that could lead the creation of a data-constrained and reliable conceptual model of the role of fluids in the preparatory phase of earthquakes in the Apennines.
    Description: The INGV Earthquake Department Strategic Project FURTHER “The role of FlUids in the pReparaTory pHase of EaRthquakes in Southern Apennines”
    Description: Published
    Description: 104236
    Description: 1T. Struttura della Terra
    Description: 2T. Deformazione crostale attiva
    Description: 3T. Fisica dei terremoti e Sorgente Sismica
    Description: 4T. Sismicità dell'Italia
    Description: 9T. Geochimica dei fluidi applicata allo studio e al monitoraggio di aree sismiche
    Description: JCR Journal
    Keywords: CO2 Earth degassing ; Earthquakes ; Mantle wedge ; Subduction ; Apennines ; 04.06. Seismology ; Geochemistry ; 04.03. Geodesy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-11-03
    Description: This paper presents new chemical and isotopic data on gases from deep oil and gas fields, bubbling gases, dissolved gases in groundwaters and dry seeps of the Southern Po River Basin (Emilia-Romagna, Italy), aiming to (i) characterize and differentiate the various types of deep natural gases; (ii) identify the source(s) of methane and light hydrocarbons in shallow aquifers and surface gas-rich emissions; (iii) propose a conceptual model of natural fluid migration pathways in the sedimentary prism of the Southern Po River Basin. Based on the isotopic composition of CH4 and C2–C4 n-alkanes, CH4/(C2H6+C3H8) ratio, relative proportion of the C7 hydrocarbons and relative concentration of cyclic compounds with respect to the total cyclic abundance, three main deep reservoirs of hydrocarbons are identified in the subsurface of the Southern Po River Basin: (1) microbial gas hosted in Pliocene-Pleistocene marine sediments, (2) thermogenic gas hosted in Miocene deposits and (3) thermogenic gas produced in Triassic carbonates. Helium isotopes of these deep fluids indicate an almost pure crustal origin (Rc/Ra values = 0.014–0.04), with negligible contributions from mantle-derived helium. A variable contribution of atmosphere-derived fluids is highlighted by low 4He/20Ne (down to 5.42) and 40Ar/36Ar (≤319.5) values. Comparison of chemical and isotopic signatures of deep and surficial hydrocarbon occurrences suggests that methane in shallow groundwaters or gas seeps is sourced by microbial gas migrating upward from deep Plio-Pleistocene reservoirs, with no detectable contributions of Triassic or Miocene thermogenic hydrocarbons. At shallow depths (roughly around 20–50 m.b.g.l.), Plio-Pleistocene microbial methane appears to be mainly stored in anoxic aquifers. However, where CH4 further migrates upwards and reaches aerobic environments (e.g., aquifers or soils), it readily undergoes a process of exothermic microbial oxidation mediated by methanotrophic bacteria. Where the structural architecture of the sedimentary sequence favors the migration of fluids, the methanotrophic biofilter is bypassed and CH4 is discharged through soil diffuse degassing or gas bubbling at water wells. We argue that microbial consumption might be able to bio-sequester significant amounts of Plio-Pleistocene deep-sourced methane in the form of CO2 and biomass. Such process might be widespread in the subsurface of the Southern Po River Basin and, possibly, in other foreland basins worldwide.
    Description: Published
    Description: 105981
    Description: 9T. Geochimica dei fluidi applicata allo studio e al monitoraggio di aree sismiche
    Description: JCR Journal
    Keywords: Methane ; Po river basin ; Emilia-romagna region ; Natural gas geochemistry ; Hydrocarbon source rocks ; Gas accumulation and migration ; Thermogenic gas ; Microbial gas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...