ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (27)
  • Climate change  (12)
  • 04.07. Tectonophysics  (8)
  • Fronts
  • American Meteorological Society  (14)
  • Elsevier  (12)
  • Wiley  (1)
  • American Chemical Society
  • American Institute of Physics
  • Blackwell Publishing Ltd
  • International Union of Crystallography
  • Springer Nature
  • Springer Science + Business Media
  • 2020-2023  (27)
  • 1965-1969
  • 1960-1964
  • 1950-1954
Collection
  • Articles  (27)
Source
Publisher
Years
Year
  • 1
    Publication Date: 2022-04-01
    Description: The Gutenberg–Richter law and the Omori law are both characterized by a scaling behavior. However, their relation is still an open question. Although several hypotheses have been formulated, a comprehen- sive geophysical mechanism is still missing to explain the observed variability of the scaling exponents b-value and p-value, e.g., correlating the seismic cycle to statistical seismology and tectonic processes. In this work, a model for describing the size-frequency scaling and the temporal evolution of seismicity is proposed starting from simple assumptions. The parameter describing how the number of earthquakes decreases after a major seismic event, p, turns out to be positively correlated to the exponent of the frequency-size distribution of seismicity, b, and related to tectonics. Our findings suggest that p ≈ 23 (b + 1). It implies that a relationship between fracturing regimes, “efficiency” of the seismic process, duration of the seismic sequences and geodynamic setting exists, with outstanding potential impact on seismic hazard. On the other hand, the Gutenberg–Richter law simply reflects the tendency of the segments of the Earth’s crust to reach mechanical stability via constrained energy-budget optimization. Each perturbation has a probability of growing an earthquake or not, depending on disorder within the fault zone and the energy accumulated in the adjoining volume, mainly controlling the evolution of seismic sequences. The results are consistent with the different energy sources related to the tectonic settings, i.e., gravitational in extensional regimes, having higher b and p values, and generating lower maximum magnitude earthquakes with respect to strike-slip and contractional settings, which are rather fueled by elastic energy, showing lower b and p values, and they may generate higher magnitude events.
    Description: Published
    Description: 117511
    Description: 3T. Fisica dei terremoti e Sorgente Sismica
    Description: JCR Journal
    Keywords: Gutenberg–Richter distribution ; fracturing and fault disorder ; Omori–Utsu law ; earthquake triggering ; tectonic setting ; 04.06. Seismology ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-04-29
    Description: We carried out new geological, morphotectonic, geophysical and paleoseismological investigations on the Meduno Thrust that belongs to the Pliocene-Quaternary front of the eastern Southern Alps in Friuli (NE Italy). The study area is located in the Carnic Prealps, where a series of alluvial terraces, linked to both climatic and tectonic pulses characterises the lower reach of the Meduna Valley. In correspondence of the oblique ramp of the Meduno Thrust, the Late Pleistocene Rivalunga terrace shows a set of scarps perpendicular to the Meduno valley, often modified by human activity. In order to reconstruct the tectonic setting of the area and identify the location for digging paleoseismological trenches, integrated geophysical investigations including electrical resistivity tomography, seismic refraction and reflection, ground penetrating radar and surface wave analyses (HVSR, ReMi and MASW), were carried out across the scarps of the Rivalunga terrace. Geophysical surveys pinpointed that in correspondence of the oblique ramp, stress is accommodated by a transpressive thrust system involving all the seismo-stratigraphic horizons apart from the ploughed soil. Trenching illustrated the Meduno Thrust movements during Late Pleistocene-Holocene. Trenches exhibited both shear planes and extrados fracturing, showing deformed alluvial and colluvial units. 14C datings of the colluvial units show that the most recent fault movements occurred after 1360 CE and 1670 CE. The age of the deformed stratigraphic units compared with the earthquakes listed in current catalogues, suggests that the 1776 earthquake (Mw 5.8, Io = 8–9 MCS) could represent the last seismic event linked to the Meduno thrust activity. This study provided new quantitative constraints improving seismic hazard assessment for Carnic prealpine area.
    Description: The research developed in the framework of the agreement between the Regione Autonoma Friuli Venezia Giulia - Direzione Centrale Ambiente ed Energia - Servizio Geologico, the Istituto Superiore per la Protezione e la Ricerca Ambientale (I.S.P.R.A.) and the University of Udine. The project was funded by the Regione Autonoma Friuli Venezia Giulia, Direzione Centrale Ambiente ed Energia, Servizio Geologico (C.I. G.: Z0E0C5EF75, p.i. Maria Eliana Poli).
    Description: Published
    Description: 229071
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: Active fault ; Paleoseismology ; Morphogenic earthquake ; Eastern Southern Alps ; Applied geophysics ; NE Italy ; 04.04. Geology ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Hahn, L. C., Storelvmo, T., Hofer, S., Parfitt, R., & Ummenhofer, C. C. Importance of Orography for Greenland cloud and melt response to atmospheric blocking. Journal of Climate, 33(10), (2020): 4187-4206, doi:10.1175/JCLI-D-19-0527.1.
    Description: More frequent high pressure conditions associated with atmospheric blocking episodes over Greenland in recent decades have been suggested to enhance melt through large-scale subsidence and cloud dissipation, which allows more solar radiation to reach the ice sheet surface. Here we investigate mechanisms linking high pressure circulation anomalies to Greenland cloud changes and resulting cloud radiative effects, with a focus on the previously neglected role of topography. Using reanalysis and satellite data in addition to a regional climate model, we show that anticyclonic circulation anomalies over Greenland during recent extreme blocking summers produce cloud changes dependent on orographic lift and descent. The resulting increased cloud cover over northern Greenland promotes surface longwave warming, while reduced cloud cover in southern and marginal Greenland favors surface shortwave warming. Comparison with an idealized model simulation with flattened topography reveals that orographic effects were necessary to produce area-averaged decreasing cloud cover since the mid-1990s and the extreme melt observed in the summer of 2012. This demonstrates a key role for Greenland topography in mediating the cloud and melt response to large-scale circulation variability. These results suggest that future melt will depend on the pattern of circulation anomalies as well as the shape of the Greenland Ice Sheet.
    Description: This research was supported by the Woods Hole Oceanographic Institution Summer Student Fellow program, by the U.S. National Science Foundation under AGS-1355339 to C.C.U., and by the European Research Council through Grant 758005.
    Keywords: Ice sheets ; Blocking ; Cloud cover ; Topographic effects ; Climate change ; Climate variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Elsevier
    Publication Date: 2022-02-10
    Description: The airborne magnetic method was established a few decades ago, as a strong tool in mining and petroleum exploration. Several economically relevant discoveries are often credited to aeromagnetism. Geological reconnaissance and mapping, deep crustal and upper mantle studies, environmental characterization, and national and international security issues can greatly benefit from the aeromagnetic method, as compared with other geophysical prospecting schemes. The rapid rate of coverage and the low cost per unit area explored represent just a few among the many advantages of the technique. Consequently, large-scale airborne magnetic surveys have been carried out in various parts of the globe. The amount of direct discoveries of ore bodies by means of aeromagnetism is impressive. Large magnetic iron deposits found in the early 1960s are in Southern California, Missouri, Nevada, Pennsylvania, Quebec, Ontario, and elsewhere. In the field of petroleum exploration, the method has also been used, although with less direct application. Depth to magnetic basement estimation in sedimentary basins narrows down areas of interest where to conduct exploration surveys in detail by means of more costly methods. The most relevant use of airborne magnetic results is crustal imaging and characterization. Nowadays, geology is interpreted in three dimensions using a digital aeromagnetic map.
    Description: Published
    Description: 675-688
    Description: 1T. Struttura della Terra
    Description: 4T. Sismicità dell'Italia
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: 1V. Storia eruttiva
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: 3A. Geofisica marina e osservazioni multiparametriche a fondo mare
    Description: 5A. Ricerche polari e paleoclima
    Description: 7A. Geofisica per il monitoraggio ambientale
    Description: 1TR. Georisorse
    Description: 2TR. Ricostruzione e modellazione della struttura crostale
    Description: 6SR VULCANI – Servizi e ricerca per la società
    Description: 7SR AMBIENTE – Servizi e ricerca per la società
    Keywords: aeromagnetism ; potential fields ; magnetic anomaly ; 04.02. Exploration geophysics ; 04.05. Geomagnetism ; 04.07. Tectonophysics ; 04.08. Volcanology ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-02-22
    Description: The westernmost Mediterranean hosts part of the plate boundary between the European and African tectonic plates. Based on the scattered instrumental seismicity, this boundary has been traditionally interpreted as a wide zone of diffuse deformation. However, recent seismic images and seafloor mapping studies support that most of the plate convergence may be accommodated in a few tectonic structures, rather than in a broad region. Historical earthquakes with magnitudes Mw 〉 6 and historical tsunamis support that the low-to-moderate instrumental seismicity might also have led to underestimation of the seismogenic and tsunamigenic potential of the area. We evaluate the largest active faults of the westernmost Mediterranean: the reverse Alboran Ridge, and the strike-slip Carboneras, Yusuf and Al-Idrissi fault systems. For the first time, we use a dense grid of modern seismic data to characterize the entire dimensions of the main fault systems, accurately describe the geometry of these structures and estimate their seismic source parameters. Tsunami scenarios have been tested based on 3D-surfaces and seismic source parameters, using both uniform and heterogeneous slip distributions. The comparison of our results with previous studies, based on limited information on the fault geometry and kinematics, indicates that accurate fault geometries and heterogeneous slip distributions are needed to properly assess the seismic and tsunamigenic potential in this area. Based on fault scaling relations, the four fault systems have a large seismogenic potential, being able to generate earthquakes with Mw 〉 7. The reverse Alboran Ridge Fault System has the largest tsunamigenic potential, being able to generate a tsunami wave amplitude greater than 3 m in front of the coasts of Southern Spain and Northern Africa.
    Description: Published
    Description: 106749
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Keywords: Western Mediterranean ; Seismogenic potential ; Tsunamigenic potential ; Numerical modelling ; Active faults ; Active seismic data ; 04.04. Geology ; 04.07. Tectonophysics ; 04.06. Seismology ; 05.08. Risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-10-18
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Pold, G., Kwiatkowski, B. L., Rastetter, E. B., & Sistla, S. A. Sporadic P limitation constrains microbial growth and facilitates SOM accumulation in the stoichiometrically coupled, acclimating microbe-plant-soil model. Soil Biology & Biochemistry, 165, (2022): 108489, https://doi.org/10.1016/j.soilbio.2021.108489.
    Description: Requirements for biomass carbon (C), nitrogen (N), and phosphorus (P) constrain organism growth and are important agents for structuring ecosystems. Arctic tundra habitats are strongly nutrient limited as decomposition and recycling of nutrients are slowed by low temperature. Modeling interactions among these elemental cycles affords an opportunity to explore how disturbances such as climate change might differentially affect these nutrient cycles. Here we introduce a C–N–P-coupled version of the Stoichiometrically Coupled Acclimating Microbe-Plant-Soil (SCAMPS) model, “SCAMPS-CNP”, and a corresponding modified CN-only model, “SCAMPS-CN”. We compared how SCAMPS-CNP and the modified SCAMPS-CN models project a moderate (RCP 6.0) air warming scenario will impact tussock tundra nutrient availability and ecosystem C stocks. SCAMPS-CNP was characterized by larger SOM and smaller organism C stocks compared to SCAMPS-CN, and a greater reduction in ecosystem C stocks under warming. This difference can largely be attributed to a smaller microbial biomass in the CNP model, which, instead of being driven by direct costs of P acquisition, was driven by variable resource limitation due to asynchronous C, N, and P availability and demand. Warming facilitated a greater relative increase in plant and microbial biomass in SCAMPS-CNP, however, facilitated by increased extracellular enzyme pools and activity, which more than offset the metabolic costs associated with their production. Although the microbial community was able to flexibly adapt its stoichiometry and become more bacteria-like (N-rich) in both models, its stoichiometry deviated further from its target value in the CNP model because of the need to balance cellular NP ratio. Our results indicate that seasonality and asynchrony in resources affect predicted changes in ecosystem C storage under warming in these models, and therefore build on a growing body of literature indicating stoichiometry should be considered in carbon cycling projections.
    Description: This work was funded by the National Science Foundation Signals in the Soil grant number 1841610 to SAS and EBR.
    Keywords: Stoichiometry ; Modeling ; Microbial physiology ; Tundra ; Climate change
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Burnham, K. A., Nowicki, R. J., Hall, E. R., Pi, J., & Page, H. N. Effects of ocean acidification on the performance and interaction of fleshy macroalgae and a grazing sea urchin. Journal of Experimental Marine Biology and Ecology, 547, (2022): 151662, https://doi.org/10.1016/j.jembe.2021.151662.
    Description: When predicting the response of marine ecosystems to climate change, it is increasingly recognized that understanding the indirect effects of ocean acidification on trophic interactions is as important as studying direct effects on organism physiology. Furthermore, comprehensive studies that examine these effects simultaneously are needed to identify and link the underlying mechanisms driving changes in species interactions. Using an onshore ocean acidification simulator system, we investigated the direct and indirect effects of elevated seawater pCO2 on the physiology and trophic interaction of fleshy macroalgae and the grazing sea urchin Lytechinus variegatus. Macroalgal (Dictyota spp.) biomass increased despite decreased photosynthetic rates after two-week exposure to elevated pCO2. Algal tissue carbon content remained constant, suggesting the use of alternative carbon acquisition pathways beneficial to growth under acidification. Higher C:N ratios driven by a slight reduction in N content in algae exposed to elevated pCO2 suggest a decrease in nutritional content under acidification. Urchin (L. variegatus) respiration, biomass, and righting time did not change significantly after six-week exposure to elevated pCO2, indicating that physiological stress and changes in metabolism are not mechanisms through which the trophic interaction was impacted. Correspondingly, urchin consumption rates of untreated macroalgae (Caulerpa racemosa) were not significantly affected by pCO2. In contrast, exposure of urchins to elevated pCO2 significantly reduced the number of correct foraging choices for ambient macroalgae (Dictyota spp.), indicating impairment of urchin chemical sensing under acidification. However, exposure of algae to elevated pCO2 returned the number of correct foraging choices in similarly exposed urchins to ambient levels, suggesting alongside higher C:N ratios that algal nutritional content was altered in a way detectable by the urchins under acidification. These results highlight the importance of studying the indirect effects of acidification on trophic interactions simultaneously with direct effects on physiology. Together, these results suggest that changes to urchin chemical sensing and algal nutritional quality are the driving mechanisms behind surprisingly unaltered urchin foraging behavior for fleshy macroalgae under joint exposure to ocean acidification. Consistent foraging behavior and consumption rates suggest that the trophic interaction between L. variegatus and fleshy macroalgae may be sustained under future acidification. However, increases in fleshy macroalgal biomass driven by opportunistic carbon acquisition strategies have the potential to cause ecological change, depending on how grazer populations respond. Additional field research is needed to determine the outcome of these results over time and under a wider range of environmental conditions.
    Description: This work was supported by Mote Marine Laboratory Postdoctoral Fellowships (RJN and HNP), Becker Internship Funding, and philanthropic funds to ERH.
    Keywords: Climate change ; Elevated pCO2 ; Direct effects ; Physiology ; Indirect effects ; Herbivory
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-27
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 51(2), (2021): 457–474, https://doi.org/10.1175/JPO-D-20-0088.1.
    Description: The meridional shift of the Kuroshio Extension (KE) front and changes in the formation of the North Pacific Subtropical Mode Water (STMW) during 1979–2018 are reported. The surface-to-subsurface structure of the KE front averaged over 142°–165°E has shifted poleward at a rate of ~0.23° ± 0.16° decade−1. The shift was caused mainly by the poleward shift of the downstream KE front (153°–165°E, ~0.41° ± 0.29° decade−1) and barely by the upstream KE front (142°–153°E). The long-term shift trend of the KE front showed two distinct behaviors before and after 2002. Before 2002, the surface KE front moved northward with a faster rate than the subsurface. After 2002, the surface KE front showed no obvious trend, but the subsurface KE front continued to move northward. The ventilation zone of the STMW, defined by the area between the 16° and 18°C isotherms or between the 25 and 25.5 kg m−3 isopycnals, contracted and displaced northward with a shoaling of the mixed layer depth hm before 2002 when the KE front moved northward. The STMW subduction rate was reduced by 0.76 Sv (63%; 1 Sv ≡ = 106 m3 s−1) during 1979–2018, most of which occurred before 2002. Of the three components affecting the total subduction rate, the temporal induction (−∂hm/∂t) was dominant accounting for 91% of the rate reduction, while the vertical pumping (−wmb) amounted to 8% and the lateral induction (−umb ⋅ ∇hm) was insignificant. The reduced temporal induction was attributed to both the contracted ventilation zone and the shallowed hm that were incurred by the poleward shift of KE front.
    Description: Xiaopei Lin is supported by the National Natural Science Foundation of China (41925025 and 92058203) and China’s national key research and development projects (2016YFA0601803). Baolan Wu is supported by the China Scholarship Council (201806330010). Lisan Yu thanks NOAA for support for her study on climate change and variability.
    Keywords: Boundary currents ; Decadal variability ; Fronts ; Water masses/storage
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-27
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 51(8),(2021): 2463–2482, https://doi.org/10.1175/JPO-D-20-0291.1.
    Description: This paper presents analyses of drifters with drogues at different depths—1, 10, 30, and 50 m—that were deployed in the Mediterranean Sea to investigate frontal subduction and upwelling. Drifter trajectories were used to estimate divergence, vorticity, vertical velocity, and finite-size Lyapunov exponents (FTLEs) and to investigate the balance of terms in the vorticity equation. The divergence and vorticity are O(f) and change sign along trajectories. Vertical velocity is O(1 mm s−1), increases with depth, indicates predominant upwelling with isolated downwelling events, and sometimes changes sign between 1 and 50 m. Vortex stretching is one of the significant terms, but not the only one, in the vorticity balance. Two-dimensional FTLEs are 2 × 10−5 s−1 after 1 day, 2 times as large as in a 400-m-resolution numerical model. Three-dimensional FTLEs are 50% larger than 2D FTLEs and are dominated by the vertical shear of horizontal velocity. Bootstrapping suggests uncertainty levels of ~10% of the time-mean absolute values for divergence and vorticity. Analysis of simulated drifters in a model suggests that drifter-based estimates of divergence and vorticity are close to the Eulerian model estimates, except when drifters get aligned into long filaments. Drifter-based vertical velocity is close to the Eulerian model estimates at 1 m but differs at deeper depths. The errors in the vertical velocity are largely due to the lateral separation between drifters at different depths and are partially due to only measuring at four depths. Overall, this paper demonstrates how drifters, heretofore restricted to 2D near-surface observations, can be used to learn about 3D flow properties throughout the upper layer of the water column.
    Description: Authors Rypina and Pratt were supported by U.S. Office of Naval Research (ONR) Grant N000141812417. Author Getscher acknowledges support from the U.S. Navy Civilian Institution Office with the MIT–WHOI Joint Program. Author Mourre acknowledges support from ONR Grant N00014-16-1-3130. We also thank Eugenio Cutolo for the initial technical support in the implementation of the ultra-high-resolution WMOP simulation. CALYPSO is a Departmental Research Initiative funded by the ONR.
    Description: 2022-01-16
    Keywords: Convergence/divergence ; Fronts ; Nonlinear dynamics ; Small scale processes ; Trajectories ; Upwelling/downwelling ; Vertical motion
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-08-29
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(8), (2022): 1593-1611, https://doi.org/10.1175/jpo-d-21-0180.1.
    Description: This study presents novel observational estimates of turbulent dissipation and mixing in a standing meander between the Southeast Indian Ridge and the Macquarie Ridge in the Southern Ocean. By applying a finescale parameterization on the temperature, salinity, and velocity profiles collected from Electromagnetic Autonomous Profiling Explorer (EM-APEX) floats in the upper 1600 m, we estimated the intensity and spatial distribution of dissipation rate and diapycnal mixing along the float tracks and investigated the sources. The indirect estimates indicate strong spatial and temporal variability of turbulent mixing varying from O(10−6) to O(10−3) m2 s−1 in the upper 1600 m. Elevated turbulent mixing is mostly associated with the Subantarctic Front (SAF) and mesoscale eddies. In the upper 500 m, enhanced mixing is associated with downward-propagating wind-generated near-inertial waves as well as the interaction between cyclonic eddies and upward-propagating internal waves. In the study region, the local topography does not play a role in turbulent mixing in the upper part of the water column, which has similar values in profiles over rough and smooth topography. However, both remotely generated internal tides and lee waves could contribute to the upward-propagating energy. Our results point strongly to the generation of turbulent mixing through the interaction of internal waves and the intense mesoscale eddy field.
    Description: The observations were funded through grants from the Australian Research Council Discovery Project (DP170102162) and Australia’s Marine National Facility. Surface drifters were provided by Dr. Shaun Dolk of the Global Drifter Program. AC was supported by an Australian Research Council Postdoctoral Fellowship. AC, HEP, and NLB acknowledge support from the Australian Government Department of the Environment and Energy National Environmental Science Program and the ARC Centre of Excellence in Climate Extremes. KP acknowledges the support from the National Science Foundation.
    Keywords: Diapycnal mixing ; Eddies ; Fronts ; Inertia-gravity waves ; Ocean dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...