ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Baker, M. G., Aster, R. C., Anthony, R. E., Chaput, J., Wiens, D. A., Nyblade, A., Bromirski, P. D., Gerstoft, P., & Stephen, R. A. Seasonal and spatial variations in the ocean-coupled ambient wavefield of the Ross Ice Shelf. Journal of Glaciology, 65(254), (2019): 912-925, doi:10.1017/jog.2019.64.
    Description: The Ross Ice Shelf (RIS) is host to a broadband, multimode seismic wavefield that is excited in response to atmospheric, oceanic and solid Earth source processes. A 34-station broadband seismographic network installed on the RIS from late 2014 through early 2017 produced continuous vibrational observations of Earth's largest ice shelf at both floating and grounded locations. We characterize temporal and spatial variations in broadband ambient wavefield power, with a focus on period bands associated with primary (10–20 s) and secondary (5–10 s) microseism signals, and an oceanic source process near the ice front (0.4–4.0 s). Horizontal component signals on floating stations overwhelmingly reflect oceanic excitations year-round due to near-complete isolation from solid Earth shear waves. The spectrum at all periods is shown to be strongly modulated by the concentration of sea ice near the ice shelf front. Contiguous and extensive sea ice damps ocean wave coupling sufficiently so that wintertime background levels can approach or surpass those of land-sited stations in Antarctica.
    Description: This research was supported by NSF grants PLR-1142518, 1141916, 1142126, 1246151 and 1246416. JC was additionally supported by Yates funds in the Colorado State University Department of Mathematics. PDB also received support from the California Department of Parks and Recreation, Division of Boating and Waterways under contract 11-106-107. We thank Reinhard Flick and Patrick Shore for their support during field work, Tom Bolmer in locating stations and preparing maps, and the US Antarctic Program for logistical support. The seismic instruments were provided by the Incorporated Research Institutions for Seismology (IRIS) through the PASSCAL Instrument Center at New Mexico Tech. Data collected are available through the IRIS Data Management Center under RIS and DRIS network code XH. The PSD-PDFs presented in this study were processed with the IRIS Noise Tool Kit (Bahavar and others, 2013). The facilities of the IRIS Consortium are supported by the National Science Foundation under Cooperative Agreement EAR-1261681 and the DOE National Nuclear Security Administration. The authors appreciate the support of the University of Wisconsin-Madison Automatic Weather Station Program for the data set, data display and information; funded under NSF grant number ANT-1543305. The Ross Ice Shelf profiles were generated using the Antarctic Mapping Tools (Greene and others, 2017). Regional maps were generated with the Generic Mapping Tools (Wessel and Smith, 1998). Topography and bathymetry data for all maps in this study were sourced from the National Geophysical Data Center ETOPO1 Global Relief Model (doi:10.7289/V5C8276M). We thank two anonymous reviewers for suggestions on the scope and organization of this paper.
    Keywords: Antarctic glaciology ; Ice shelves ; Seismology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Baker, M. G., Aster, R. C., Wiens, D. A., Nyblade, A., Bromirski, P. D., Gerstoft, P., & Stephen, R. A. Teleseismic earthquake wavefields observed on the Ross Ice Shelf. Journal of Glaciology, 67(261), (2021): 58-74, https://doi.org/10.1017/jog.2020.83.
    Description: Observations of teleseismic earthquakes using broadband seismometers on the Ross Ice Shelf (RIS) must contend with environmental and structural processes that do not exist for land-sited seismometers. Important considerations are: (1) a broadband, multi-mode ambient wavefield excited by ocean gravity wave interactions with the ice shelf; (2) body wave reverberations produced by seismic impedance contrasts at the ice/water and water/seafloor interfaces and (3) decoupling of the solid Earth horizontal wavefield by the sub-shelf water column. We analyze seasonal and geographic variations in signal-to-noise ratios for teleseismic P-wave (0.5–2.0 s), S-wave (10–15 s) and surface wave (13–25 s) arrivals relative to the RIS noise field. We use ice and water layer reverberations generated by teleseismic P-waves to accurately estimate the sub-station thicknesses of these layers. We present observations consistent with the theoretically predicted transition of the water column from compressible to incompressible mechanics, relevant for vertically incident solid Earth waves with periods longer than 3 s. Finally, we observe symmetric-mode Lamb waves generated by teleseismic S-waves incident on the grounding zones. Despite their complexity, we conclude that teleseismic coda can be utilized for passive imaging of sub-shelf Earth structure, although longer deployments relative to conventional land-sited seismometers will be necessary to acquire adequate data.
    Description: This research was supported by NSF grants PLR-1142518, 1141916, 1142126, 1246151, 1246416 and OPP-1744852 and 1744856.
    Keywords: Glacier geophysics ; Ice shelves ; Seismology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Xu, X., Li, G., Li, C., Zhang, J., Wang, Q., Simmons, D. K., Chen, X., Wijesena, N., Zhu, W., Wang, Z., Wang, Z., Ju, B., Ci, W., Lu, X., Yu, D., Wang, Q., Aluru, N., Oliveri, P., Zhang, Y. E., Martindale, M. Q., & Liu, J. Evolutionary transition between invertebrates and vertebrates via methylation reprogramming in embryogenesis. National Science Review, 6(5), (2019):993-1003, doi:10.1093/nsr/nwz064.
    Description: Major evolutionary transitions are enigmas, and the most notable enigma is between invertebrates and vertebrates, with numerous spectacular innovations. To search for the molecular connections involved, we asked whether global epigenetic changes may offer a clue by surveying the inheritance and reprogramming of parental DNA methylation across metazoans. We focused on gametes and early embryos, where the methylomes are known to evolve divergently between fish and mammals. Here, we find that methylome reprogramming during embryogenesis occurs neither in pre-bilaterians such as cnidarians nor in protostomes such as insects, but clearly presents in deuterostomes such as echinoderms and invertebrate chordates, and then becomes more evident in vertebrates. Functional association analysis suggests that DNA methylation reprogramming is associated with development, reproduction and adaptive immunity for vertebrates, but not for invertebrates. Interestingly, the single HOX cluster of invertebrates maintains unmethylated status in all stages examined. In contrast, the multiple HOX clusters show dramatic dynamics of DNA methylation during vertebrate embryogenesis. Notably, the methylation dynamics of HOX clusters are associated with their spatiotemporal expression in mammals. Our study reveals that DNA methylation reprogramming has evolved dramatically during animal evolution, especially after the evolutionary transitions from invertebrates to vertebrates, and then to mammals.
    Description: This work was supported by the National Key Research and Development Program of China (2018YFC1003303), the Strategic Priority Research Program of the CAS (XDB13040200), the National Natural Science Foundation of China (91519306, 31425015), the Youth Innovation Promotion Association of the CAS and the Key Research Program of Frontier Sciences, CAS (QYZDY-SSW-SMC016).
    Keywords: DNA methylation ; evolution ; development ; reprogramming
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2020. This is the author's version of the work. It is posted here by permission of Oxford University Press for personal use, not for redistribution. The definitive version was published in Toxicological Sciences (2020): kfaa158, doi:10.1093/toxsci/kfaa158.
    Description: Chemical modifications of proteins, DNA, and RNA moieties play critical roles in regulating gene expression. Emerging evidence suggests the RNA modifications (epitranscriptomics) have substantive roles in basic biological processes. One of the most common modifications in mRNA and noncoding RNAs is N6-methyladenosine (m6A). In a subset of mRNAs, m6A sites are preferentially enriched near stop codons, in 3′ UTRs, and within exons, suggesting an important role in the regulation of mRNA processing and function including alternative splicing and gene expression. Very little is known about the effect of environmental chemical exposure on m6A modifications. As many of the commonly occurring environmental contaminants alter gene expression profiles and have detrimental effects on physiological processes, it is important to understand the effects of exposure on this important layer of gene regulation. Hence, the objective of this study was to characterize the acute effects of developmental exposure to PCB126, an environmentally relevant dioxin-like PCB, on m6A methylation patterns. We exposed zebrafish embryos to PCB126 for 6 h starting from 72 h post fertilization and profiled m6A RNA using methylated RNA immunoprecipitation followed by sequencing (MeRIP-seq). Our analysis revealed 117 and 217 m6A peaks in the DMSO and PCB126 samples (false discovery rate 5%), respectively. The majority of the peaks were preferentially located around the 3′ UTR and stop codons. Statistical analysis revealed 15 m6A marked transcripts to be differentially methylated by PCB126 exposure. These include transcripts that are known to be activated by AHR agonists (eg, ahrra, tiparp, nfe2l2b) as well as others that are important for normal development (vgf, cebpd, sned1). These results suggest that environmental chemicals such as dioxin-like PCBs could affect developmental gene expression patterns by altering m6A levels. Further studies are necessary to understand the functional consequences of exposure-associated alterations in m6A levels.
    Description: National Institute of Health National Institute of Environmental Health Sciences Outstanding New Environmental Scientist (NIH R01ES024915 to N.A.); Woods Hole Center for Oceans and Human Health [National Institutes of Health (NIH) (Grant P01ES028938); National Science Foundation (Grant OCE-1840381) to M. E. Hahn, J. J. Stegeman, N.A., and S.K.].
    Description: 2021-10-16
    Keywords: dioxin-like PCBs ; development ; zebrafish ; epitranscriptomics ; m6A ; MeRIP
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...