ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-02-22
    Description: One of the most effective approaches to identifying possible precursors of eruptions is the analysis of seismicity patterns recorded at volcanoes. Accurate locations of the seismicity and the estimate of source mechanisms can resolve fault systems and track fluid migrations through volcanoes. We analysed the six main swarms recorded at Campi Flegrei since 2000, using them as a proxy of the processes involved in the long-term-unrest of this densely populated caldera. We re-located the earthquakes comprised in these swarms and estimated the focal mechanisms, which appear in agreement with the fault systems of the caldera and with tomographic images. The focal mechanisms are in agreement with the tensional stress induced by the caldera uplift. Most of the swarms and remaining seismicity delineate a highly fractured volume extending vertically below the Solfatara/ Pisciarelli vents, where gases find preferential paths to the surface triggering earthquakes. The main swarms are located below this volume where the presence of a rigid caprock is still debated. We interpreted the current unrest in term of a gradual increment in the activity of a wide hydrothermal system whose most evident manifestation is the enlargement of the fumarolic-field of Pisciarelli and the increment of the earthquakes occurrence rate.
    Description: Published
    Description: 2900
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: Campi Flegrei ; swarm ; volcano seismicity ; 04.08. Volcanology ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-11
    Description: Mt Etna has made headlines over the last weeks and months with spectacular eruptions, some of them highly explosive. This type of paroxysmal eruptive behaviour is characteristic of Etna’s activity over the past few decades and so it is no surprise that Etna is among the most active volcanoes worldwide. Etna is well-known for its extraordinary geology and due to its repeated eruptive activity it provides a continuous supply of new scientific opportunities to understand the inner workings of large basaltic volcanic systems. In addition to its scientific value, Etna is also a world famous tourist attraction and has been listed as a UNESCO World Heritage site in 2013 for its geological and cultural value and not least for its fine agricultural products. Etna’s status as an iconic volcano is not a recent phenomenon; in fact, Etna has been a literary fixture for at least 3000 years, giving rise to many ancient myths and legends that mark it as a special place, deserving of human respect. From the ancient eruptions to the latest events in February–April 2021, people try to explain and understand the processes that occur within and beneath the volcano. In this article, we briefly summarize the recent eruptive activity of Etna as well as the ancient myths and legends that surround this volcano, from the underground forge of Hephaestus to the adventures of Odysseus, all the way to the benefits and dangers the volcano provides to those living on its flanks today.
    Description: Published
    Description: 141-149
    Description: 2TM. Divulgazione Scientifica
    Description: N/A or not JCR
    Keywords: Etna, mythology, 2021 paroxysms, economy ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-02-11
    Description: The most explosive basaltic scoria cone eruption yet documented (〉20 km high plumes) occurred at Sunset Crater (Arizona) ca. 1085 AD by undetermined eruptive mechanisms. We present melt inclusion analysis, including bubble contents by Raman spectroscopy, yielding high total CO2 (approaching 6000 ppm) and S (~2000 ppm) with moderate H2O (~1.25 wt%). Two groups of melt inclusions are evident, classified by bubble vol%. Modeling of post-entrapment modification indicates that the group with larger bubbles formed as a result of heterogeneous entrapment of melt and exsolved CO2 and provides evidence for an exsolved CO2 phase at magma storage depths of ~15 km. We argue that this exsolved CO2 phase played a critical role in driving this explosive eruption, possibly analogous to H2O exsolution driving silicic caldera-forming eruptions. Because of their distinct gas compositions relative to silicic magmas (high S and CO2), even modest volume explosive basaltic eruptions could impact the atmosphere.
    Description: Published
    Description: 217
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: Explosive eruptions ; Basaltic eruptions ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-06
    Description: The high seismic productivity of volcanic areas provides the chance to investigate the local stress conditions with great resolution, by analysing the slope of the frequency-magnitude distribution of earthquakes, namely the b-value. Here we investigated the seismicity of Mt. Etna between 2005 and 2019, focusing on one of the largest known episodes of unrest in December 2018, when most of the intruding magma aborted, rather oddly, its ascent inside the volcano. We found a possible stress concentration zone along magma pathways, which may have inhibited the occurrence of a larger eruption. If the origin of such hypothetical loaded region is related to tectonic forces, one must consider the possibility that geodynamic processes can locally result in such rapid crustal strain as to perturb the release of magma. Strong b-value time-variations occurred a few days before the unrest event, suggesting new possibilities for investigating the volcano state and impending eruptions.
    Description: Published
    Description: 68
    Description: 1T. Struttura della Terra
    Description: 1V. Storia eruttiva
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 4V. Processi pre-eruttivi
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: 04.06. Seismology ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-12-15
    Description: Pyroclastic surges are lethal hazards from volcanoes that exhibit enormous destructiveness through dynamic pressures of 100–102 kPa inside flows capable of obliterating reinforced buildings. However, to date, there are no measurements inside these currents to quantify the dynamics of this important hazard process. Here we show, through large-scale experiments and the first field measurement of pressure inside pyroclastic surges, that dynamic pressure energy is mostly carried by large-scale coherent turbulent structures and gravity waves. These perpetuate as low-frequency high-pressure pulses downcurrent, form maxima in the flow energy spectra and drive a turbulent energy cascade. The pressure maxima exceed mean values, which are traditionally estimated for hazard assessments, manifold. The fre- quency of the most energetic coherent turbulent structures is bounded by a critical Strouhal number of ~0.3, allowing quantitative predictions. This explains the destructiveness of real- world flows through the development of c. 1–20 successive high-pressure pulses per minute. This discovery, which is also applicable to powder snow avalanches, necessitates a re- evaluation of hazard models that aim to forecast and mitigate volcanic hazard impacts globally.
    Description: Published
    Description: 7306
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-12-16
    Description: Pisciarelli, together with the adjacent Solfatara maar-diatreme, represents the most active structure of the Campi Flegrei caldera (Italy) in terms of degassing and seismic activity. This paper aims to define the structure of the Pisciarelli hydrothermal system (down to a 20 m depth) through electrical resistivity and time-domain-induced polarization tomography and self-potential mapping. The retrieved 3D image of the area helps reconstruct the Pisciarelli subsurface in its area of maximum degassing, containing the main fumarole ("soffione") and the mud pool. In particular, a channel has been identified in which fluids stored in a deeper reservoir rise toward the surface. Such a structure seems to be surmounted by a clay-cap formation that could govern the circulation of fluids and the abundance of gases/vapors emitted by the soffione. Based on this new reconstruction of the Pisciarelli fumarolic field structural setting, the first conceptual model has been suggested that is capable of simultaneously explaining the mechanisms governing soffione activity and elucidating the role played by the fluid/gas of deeper origin in the shallow fluid circulation system. The proposed model can potentially help to better monitor the processes occurring throughout the Pisciarelli fumarolic field and provide an evaluation of the associated hazards.
    Description: Published
    Description: 18639
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: Campi Flegrei caldera ; Pisciarelli fumarolic field ; electrical resistivity imaging ; induced polarization imaging ; 04. Solid Earth ; 04.02. Exploration geophysics ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-11-25
    Description: Ambient noise polarizes inside fault zones, yet the spatial and temporal resolution of polarized noise on gas-bearing fluids migrating through stressed volcanic systems is unknown. Here we show that high polarization marks a transfer structure connecting the deforming centre of the caldera to open hydrothermal vents and extensional caldera-bounding faults during periods of low seismic release at Campi Flegrei caldera (Southern Italy). Fluids pressurize the Campi Flegrei hydrothermal system, migrate, and increase stress before earthquakes. The loss of polarization (depolarization) of the transfer and extensional structures maps pressurized fluids, detecting fluid migrations after seismic sequences. After recent intense seismicity (December 2019-April 2020), the transfer structure appears sealed while fluids stored in the east caldera have moved further east. Our findings show that depolarized noise has the potential to monitor fluid migrations and earthquakes at stressed volcanoes quasi-instantaneously and with minimum processing.
    Description: Published
    Description: 6656
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: Campi Flegrei ; seismic noise ; polarization ; fluid migration ; 04.06. Seismology ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-12-23
    Description: Pyroclastic density currents are ground hugging gas-particle flows that originate from the collapse of an eruption column or lava dome. They move away from the volcano at high speed, causing devastation. The impact is generally associated with flow dynamic pressure and temperature. Little emphasis has yet been given to flow duration, although it is emerging that the survival of people engulfed in a current strongly depends on the exposure time. The AD 79 event of Somma-Vesuvius is used here to demonstrate the impact of pyroclastic density currents on humans during an historical eruption. At Herculaneum, at the foot of the volcano, the temperature and strength of the flow were so high that survival was impossible. At Pompeii, in the distal area, we use a new model indicating that the current had low strength and low temperature, which is confirmed by the absence of signs of trauma on corpses. Under such conditions, survival should have been possible if the current lasted a few minutes or less. Instead, our calculations demonstrate a flow duration of 17 min, long enough to make lethal the breathing of ash suspended in the current. We conclude that in distal areas where the mechanical and thermal effects of a pyroclastic density currents are diminished, flow duration is the key for survival.
    Description: Published
    Description: 4959
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Pyroclastic density current ; AD 79 Eruption ; 04.08. Volcanology ; 04.04. Geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-06-22
    Description: Silicic calderas are volcanic systems whose unrest evolution is more unpredictable than other volcano types because they often do not culminate in an eruption. Their complex structure strongly influences the post-collapse volcano-tectonic evolution, usually coupling volcanism and ground deformation. Among such volcanoes, the Campi Flegrei caldera (southern Italy) is one of the most studied. Significant long- and short-term ground deformations characterize this restless volcano. Several studies performed on the marinecontinental succession exposed in the central sector of the Campi Flegrei caldera provided a reconstruction of ground deformation during the last 15 kyr. However, considering that over one-third of the caldera is presently submerged beneath the Pozzuoli Gulf, a comprehensive stratigraphic on-land-offshore framework is still lacking. This study aims at reconstructing the offshore succession through analysis of high-resolution single and multichannel reflection seismic profiles and correlates the resulting seismic stratigraphic framework with the stratigraphy reconstructed on-land. Results provide new clues on the causative relations between the intra-caldera marine and volcaniclastic sedimentation and the alternating phases of marine transgressions and regressions originated by the interplay between ground deformation and sea-level rise. The volcano-tectonic reconstruction, provided in this work, connects the major caldera floor movements to the large Plinian eruptions of Pomici Principali (12 ka) and Agnano Monte Spina (4.55 ka), with the onset of the first post-caldera doming at ~10.5 ka. We emphasize that ground deformation is usually coupled with volcanic activity, which shows a self-similar pattern, regardless of its scale. Thus, characterizing the long-term deformation history becomes of particular interest and relevance for hazard assessment and definition of future unrest scenarios.
    Description: Published
    Description: 855-882
    Description: 1V. Storia eruttiva
    Description: JCR Journal
    Keywords: offshore stratigraphy ; seismic units ; La Starza succession ; volcanism, ; 04.08. Volcanology ; 04.04. Geology ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...