ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Chemical Society  (214,845)
  • Cambridge University Press  (14,879)
  • American Institute of Physics (AIP)
  • 2020-2023  (34)
  • 1980-1984  (125,711)
  • 1965-1969  (103,979)
Collection
Years
Year
  • 1
    facet.materialart.
    Unknown
    Cambridge University Press
    In:  EPIC3Antarctic Science, Cambridge University Press, 33(6), pp. 575-595, ISSN: 0954-1020
    Publication Date: 2022-01-13
    Description: The waters along the West Antarctic Peninsula (WAP) have experienced warming and increased freshwater inputs from melting sea ice and glaciers in recent decades. Challenges exist in understanding the consequences of these changes on the inorganic carbon system in this ecologically important and highly productive ecosystem. Distributions of dissolved inorganic carbon (CT), total alkalinity (AT) and nutrients revealed key physical, biological and biogeochemical controls of the calcium carbonate saturation state (Ωaragonite) in different water masses across the WAP shelf during the summer. Biological production in spring and summer dominated changes in surface water Ωaragonite (ΔΩaragonite up to +1.39; ∼90%) relative to underlying Winter Water. Sea-ice and glacial meltwater constituted a minor source of AT that increased surface water Ωaragonite (ΔΩaragonite up to +0.07; ∼13%). Remineralization of organic matter and an influx of carbon-rich brines led to cross-shelf decreases in Ωaragonite in Winter Water and Circumpolar Deep Water. A strong biological carbon pump over the shelf created Ωaragonite oversaturation in surface waters and suppression of Ωaragonite in subsurface waters. Undersaturation of aragonite occurred at 〈 ∼1000 m. Ongoing changes along the WAP will impact the biologically driven and meltwater-driven processes that influence the vulnerability of shelf waters to calcium carbonate undersaturation in the future.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-07
    Description: Microplastic (MP) pollution has been found in the Southern Ocean surrounding Antarctica, but many local regions within this vast area remain uninvestigated. The remote Weddell Sea contributes to the global thermohaline circulation, and one of the two Antarctic gyres is located in that region. In the present study, we evaluate MP (〉300 μm) concentration and composition in surface (n = 34) and subsurface water samples (n = 79, ∼11.2 m depth) of the Weddell Sea. All putative MP were analyzed by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. MP was found in 65% of surface and 11.4% of subsurface samples, with mean (±standard deviation (SD)) concentrations of 0.01 (±0.01 SD) MP m–3 and 0.04 (±0.1 SD) MP m–3, respectively, being within the range of previously reported values for regions south of the Polar Front. Additionally, we aimed to determine whether identified paint fragments (n = 394) derive from the research vessel. Environmentally sampled fragments (n = 101) with similar ATR-FTIR spectra to reference paints from the research vessel and fresh paint references generated in the laboratory were further subjected to micro-X-ray fluorescence spectroscopy (μXRF) to compare their elemental composition. This revealed that 45.5% of all recovered MP derived from vessel-induced contamination. However, 11% of the measured fragments could be distinguished from the reference paints via their elemental composition. This study demonstrates that differentiation based purely on visual characteristics and FTIR spectroscopy might not be sufficient for accurately determining sample contamination sources.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in [Schiller, C. M., Whitlock, C., Elder, K. L., Iverson, N. A., & Abbott, M. B. Erroneously old radiocarbon ages from terrestrial pollen concentrates in Yellowstone Lake, Wyoming, USA. Radiocarbon, 63(1), (2021): 321-342, https://doi.org/10.1017/RDC.2020.118.
    Description: Accelerator mass spectrometry (AMS) dating of pollen concentrates is often used in lake sediment records where large, terrestrial plant remains are unavailable. Ages produced from chemically concentrated pollen as well as manually picked Pinaceae grains in Yellowstone Lake (Wyoming) sediments were consistently 1700–4300 cal years older than ages established by terrestrial plant remains, tephrochronology, and the age of the sediment-water interface. Previous studies have successfully utilized the same laboratory space and methods, suggesting the source of old-carbon contamination is specific to these samples. Manually picking pollen grains precludes admixture of non-pollen materials. Furthermore, no clear source of old pollen grains occurs on the deglaciated landscape, making reworking of old pollen grains unlikely. High volumes of CO2 are degassed in the Yellowstone Caldera, potentially introducing old carbon to pollen. While uptake of old CO2 through photosynthesis is minor (F14C approximately 0.99), old-carbon contamination may still take place in the water column or in surficial lake sediments. It remains unclear, however, what mechanism allows for the erroneous ages of highly refractory pollen grains while terrestrial plant remains were unaffected. In the absence of a satisfactory explanation for erroneously old radiocarbon ages from pollen concentrates, we propose steps for further study.
    Description: This research was supported by NSF Grant No. 1515353 to C. Whitlock and sampling in Yellowstone National Park was conducted under permits YELL-SCI-0009 and YELL-SCI-5054.
    Keywords: AMS dating ; Chronology ; Contamination ; Paleoecology ; Pine
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Roberts, Mark L., Elder, Kathryn L., Jenkins, William J., Gagnon, Alan R., Xu, Li, Hlavenka, Joshua D., & Longworth, Brett E. C-14 Blank Corrections for 25-100 mu G samples at the National Ocean Sciences AMS Laboratory. Radiocarbon, 61(5), (2019): 1403-1411, Doi: 10.1017/RDC.2019.74.
    Description: Replicate radiocarbon (14C) measurements of organic and inorganic control samples, with known Fraction Modern values in the range Fm = 0–1.5 and mass range 6 μg–2 mg carbon, are used to determine both the mass and radiocarbon content of the blank carbon introduced during sample processing and measurement in our laboratory. These data are used to model, separately for organic and inorganic samples, the blank contribution and subsequently “blank correct” measured unknowns in the mass range 25–100 μg. Data, formulas, and an assessment of the precision and accuracy of the blank correction are presented.
    Description: This work is supported by a Cooperative Agreement (OCE-1755125) with the U.S. National Science Foundation.
    Keywords: AMS ; AMS dating ; Blank corrections
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Baker, M. G., Aster, R. C., Anthony, R. E., Chaput, J., Wiens, D. A., Nyblade, A., Bromirski, P. D., Gerstoft, P., & Stephen, R. A. Seasonal and spatial variations in the ocean-coupled ambient wavefield of the Ross Ice Shelf. Journal of Glaciology, 65(254), (2019): 912-925, doi:10.1017/jog.2019.64.
    Description: The Ross Ice Shelf (RIS) is host to a broadband, multimode seismic wavefield that is excited in response to atmospheric, oceanic and solid Earth source processes. A 34-station broadband seismographic network installed on the RIS from late 2014 through early 2017 produced continuous vibrational observations of Earth's largest ice shelf at both floating and grounded locations. We characterize temporal and spatial variations in broadband ambient wavefield power, with a focus on period bands associated with primary (10–20 s) and secondary (5–10 s) microseism signals, and an oceanic source process near the ice front (0.4–4.0 s). Horizontal component signals on floating stations overwhelmingly reflect oceanic excitations year-round due to near-complete isolation from solid Earth shear waves. The spectrum at all periods is shown to be strongly modulated by the concentration of sea ice near the ice shelf front. Contiguous and extensive sea ice damps ocean wave coupling sufficiently so that wintertime background levels can approach or surpass those of land-sited stations in Antarctica.
    Description: This research was supported by NSF grants PLR-1142518, 1141916, 1142126, 1246151 and 1246416. JC was additionally supported by Yates funds in the Colorado State University Department of Mathematics. PDB also received support from the California Department of Parks and Recreation, Division of Boating and Waterways under contract 11-106-107. We thank Reinhard Flick and Patrick Shore for their support during field work, Tom Bolmer in locating stations and preparing maps, and the US Antarctic Program for logistical support. The seismic instruments were provided by the Incorporated Research Institutions for Seismology (IRIS) through the PASSCAL Instrument Center at New Mexico Tech. Data collected are available through the IRIS Data Management Center under RIS and DRIS network code XH. The PSD-PDFs presented in this study were processed with the IRIS Noise Tool Kit (Bahavar and others, 2013). The facilities of the IRIS Consortium are supported by the National Science Foundation under Cooperative Agreement EAR-1261681 and the DOE National Nuclear Security Administration. The authors appreciate the support of the University of Wisconsin-Madison Automatic Weather Station Program for the data set, data display and information; funded under NSF grant number ANT-1543305. The Ross Ice Shelf profiles were generated using the Antarctic Mapping Tools (Greene and others, 2017). Regional maps were generated with the Generic Mapping Tools (Wessel and Smith, 1998). Topography and bathymetry data for all maps in this study were sourced from the National Geophysical Data Center ETOPO1 Global Relief Model (doi:10.7289/V5C8276M). We thank two anonymous reviewers for suggestions on the scope and organization of this paper.
    Keywords: Antarctic glaciology ; Ice shelves ; Seismology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Xu, L., Roberts, M., Elder, K., Hansman, R., Gagnon, A., & Kurz, M. Radiocarbon in dissolved organic carbon by UV oxidation: an update of procedures and blank characterization at NOSAMS. Radiocarbon, 64(1), (2022): 195-199, https://doi.org/10.1017/rdc.2022.4.
    Description: This note describes improvements of UV oxidation method that is used to measure carbon isotopes of dissolved organic carbon (DOC) at the National Ocean Sciences Accelerator Mass Spectrometry Facility (NOSAMS). The procedural blank is reduced to 2.6 ± 0.6 μg C, with Fm of 0.42 ± 0.10 and δ13C of –28.43 ± 1.19‰. The throughput is improved from one sample per day to two samples per day.
    Description: We gratefully acknowledge support from the U.S. National Science Foundation, via NSF-OCE-1755125.
    Keywords: Blank ; Dissolved organic carbon ; Radiocarbon ; UV-oxidation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-10-21
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ackley, S. F., Stammerjohn, S., Maksym, T., Smith, M., Cassano, J., Guest, P., Tison, J., Delille, B., Loose, B., Sedwick, P., DePace, L., Roach, L., & Parno, J. Sea-ice production and air/ice/ocean/biogeochemistry interactions in the Ross Sea during the PIPERS 2017 autumn field campaign. Annals of Glaciology, 61(82), (2020): 181-195, doi:10.1017/aog.2020.31.
    Description: The Ross Sea is known for showing the greatest sea-ice increase, as observed globally, particularly from 1979 to 2015. However, corresponding changes in sea-ice thickness and production in the Ross Sea are not known, nor how these changes have impacted water masses, carbon fluxes, biogeochemical processes and availability of micronutrients. The PIPERS project sought to address these questions during an autumn ship campaign in 2017 and two spring airborne campaigns in 2016 and 2017. PIPERS used a multidisciplinary approach of manned and autonomous platforms to study the coupled air/ice/ocean/biogeochemical interactions during autumn and related those to spring conditions. Unexpectedly, the Ross Sea experienced record low sea ice in spring 2016 and autumn 2017. The delayed ice advance in 2017 contributed to (1) increased ice production and export in coastal polynyas, (2) thinner snow and ice cover in the central pack, (3) lower sea-ice Chl-a burdens and differences in sympagic communities, (4) sustained ocean heat flux delaying ice thickening and (5) a melting, anomalously southward ice edge persisting into winter. Despite these impacts, airborne observations in spring 2017 suggest that winter ice production over the continental shelf was likely not anomalous.
    Description: NSF supported PIPERS award numbers: ANT-1341717 (S.F. Ackley, UTSA); ANT-1341513 (E. Maksym, WHOI); ANT-1341606 (S. Stammerjohn and J. Cassano, U Colorado); ANT-1341725 (P. Guest, NPS). P. Sedwick was supported by NSF ANT-1543483. S.F. Ackley was also supported by NASA Grant 80NSSC19M0194 to the Center for Advanced Measurements in Extreme Environments at UTSA. S. Stammerjohn was also supported by the LTER Program under NFS award number ANT-0823101 (H. Ducklow, LDEO/Columbia University). Additional support was by the Belgian F.R.S-FNRS (project ISOGGAP and IODIne, contract T.0268.16 and J.0262.17, respectively). Bruno Delille is a research associate of the F.R.S.-FNRS. Terra-Sar-X quicklook imagery was coordinated by Kathrin Hoeppner at DLR, and Andy Archer (with the Antarctic Support Contractor) provided selected (cloud-free) MODIS scenes and daily maps of AMSR2 sea-ice concentration.
    Keywords: Atmosphere/ice/ocean interactions ; Ice/ocean interactions ; Sea ice ; Sea-ice growth and decay
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-10-21
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Colson, B. C., & Michel, A. P. M. Flow-through quantification of microplastics using impedance spectroscopy. ACS Sensors, 6(1), (2021): 238–244, doi:10.1021/acssensors.0c02223.
    Description: Understanding the sources, impacts, and fate of microplastics in the environment is critical for assessing the potential risks of these anthropogenic particles. However, our ability to quantify and identify microplastics in aquatic ecosystems is limited by the lack of rapid techniques that do not require visual sorting or preprocessing. Here, we demonstrate the use of impedance spectroscopy for high-throughput flow-through microplastic quantification, with the goal of rapid measurement of microplastic concentration and size. Impedance spectroscopy characterizes the electrical properties of individual particles directly in the flow of water, allowing for simultaneous sizing and material identification. To demonstrate the technique, spike and recovery experiments were conducted in tap water with 212–1000 μm polyethylene beads in six size ranges and a variety of similarly sized biological materials. Microplastics were reliably detected, sized, and differentiated from biological materials via their electrical properties at an average flow rate of 103 ± 8 mL/min. The recovery rate was ≥90% for microplastics in the 300–1000 μm size range, and the false positive rate for the misidentification of the biological material as plastic was 1%. Impedance spectroscopy allowed for the identification of microplastics directly in water without visual sorting or filtration, demonstrating its use for flow-through sensing.
    Description: The authors thank the Richard Saltonstall Charitable Foundation and the National Academies Keck Futures Initiative (NAKFI DBS13) for their funding support.
    Keywords: Microplastics ; Plastics ; Impedance spectroscopy ; Dielectric properties ; Instrumentation ; Particle detection ; Flow-through ; Environmental sensing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-12-07
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in James, B., de Vos, A., Aluwihare, L., Youngs, S., Ward, C., Nelson, R., Michel, A., Hahn, M., & Reddy, C. Divergent forms of pyroplastic: lessons learned from the M/V X-Press Pearl ship fire. ACS Environmental Au, 2(5), (2022): 467–479, https://doi.org/10.1021/acsenvironau.2c00020.
    Description: In late May 2021, the M/V X-Press Pearl container ship caught fire while anchored 18 km off the coast of Colombo, Sri Lanka and spilled upward of 70 billion pieces of plastic or “nurdles” (∼1680 tons), littering the country’s coastline. Exposure to combustion, heat, chemicals, and petroleum products led to an apparent continuum of changes from no obvious effects to pieces consistent with previous reports of melted and burned plastic (pyroplastic) found on beaches. At the middle of this continuum, nurdles were discolored but appeared to retain their prefire morphology, resembling nurdles that had been weathered in the environment. We performed a detailed investigation of the physical and surface properties of discolored nurdles collected on a beach 5 days after the ship caught fire and within 24 h of their arrival onshore. The color was the most striking trait of the plastic: white for nurdles with minimal alteration from the accident, orange for nurdles containing antioxidant degradation products formed by exposure to heat, and gray for partially combusted nurdles. Our color analyses indicate that this fraction of the plastic released from the ship was not a continuum but instead diverged into distinct groups. Fire left the gray nurdles scorched, with entrained particles and pools of melted plastic, and covered in soot, representing partial pyroplastics, a new subtype of pyroplastic. Cross sections showed that the heat- and fire-induced changes were superficial, leaving the surfaces more hydrophilic but the interior relatively untouched. These results provide timely and actionable information to responders to reevaluate cleanup end points, monitor the recurrence of these spilled nurdles, gauge short- and long-term effects of the spilled nurdles to the local ecosystem, and manage the recovery of the spill. These findings underscore partially combusted plastic (pyroplastic) as a type of plastic pollution that has yet to be fully explored despite the frequency at which plastic is burned globally.
    Description: This work was supported by the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution (WHOI), with funding provided by the Weston Howland Jr. Postdoctoral Scholarship. Additional support was provided by the WHOI Marine Microplastics Catalyst Program, the WHOI Marine Microplastics Innovation Accelerator Program, the WHOI Investment in Science Fund, the March Marine Initiative (a program of March Limited, Bermuda), The Seaver Institute, Gerstner Philanthropies, the Wallace Research Foundation, the Richard Saltonstall Charitable Foundation, the Harrison Foundation, Hollis and Ermine Lovell Charitable Foundation, and the Richard Grand Foundation. AdV was supported by funding from the Schmidt Foundation.
    Keywords: Microplastic ; Resin pellets ; Pollution ; Additives ; Open burning ; Weathering ; Maritime accident
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-06-22
    Description: Pliocene–Quaternary faults are relevant structures with which to constrain the seismotectonic context and contribute to the evaluation of the seismic hazard of a region. Many of these faults, however, do not show clear surface evidence even when releasing earthquakes. For these reasons they can be extremely dangerous as they receive relatively little attention and can be difficult to identify. From among the various surface geology studies and/or palaeoseismological investigations, we focus our attention on the integration of different datasets such as seismic reflection profiles, surface kinematic data and the relocation of seismological data, which make it possible to identify and characterize active faults whose dimension and earthquake potential would otherwise not be large enough to make them identifiable. We take as an example the Montespertoli NE-trending fault in southern Tuscany (central Italy) with which we associate the 2016 M=3.9 Castelfiorentino earthquake. This structure is part of a wider (in the order of 15–20 km) crustal-scale shear zone, which may be responsible for strong historical earthquakes in the area.
    Description: Published
    Description: 853 - 872
    Description: 4T. Sismicità dell'Italia
    Description: JCR Journal
    Keywords: active faults ; seismic faults ; Earthquakes ; strike-slip faults ; inner Northern Apennines ; solid earth
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...