ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell Press  (9,709)
  • University of Chicago Press
  • 2020-2023  (13)
  • 1985-1989  (10,613)
  • 1940-1944  (1,146)
Collection
Years
Year
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © University of Chicago, 2019. This article is posted here by permission of University of Chicago for personal use, not for redistribution. The definitive version was published in Biological Bulletin 237(2), (2019): 73-75, doi: 10.1086/706563.
    Description: Dormancy is a widespread strategy used by diverse animal groups to persist through adverse environmental conditions, spread reproductive risk, and optimize seasonal phenology. Dormancy is an overarching term that refers to a reduction in metabolism, growth, and development; and different types of dormancy have been defined. Quiescence is directly initiated and terminated in response to environmental conditions, while diapause requires a preparatory phase that usually anticipates the onset of unfavorable conditions and also requires some minimum dormancy period (refractory phase) prior to termination. Dormancy is a fundamental feature of seasonal food web dynamics. Zooplankton populations can rapidly boom as individuals emerge from dormancy to feed on ephemeral algal blooms. Such productivity is critical to sustaining higher predators and supporting fisheries, particularly the growth of larval fish. Dormancy traits undergo selective pressure as zooplankton optimize developmental timing to maximize food availability and minimize predation pressure. As oceans warm and environments change, the relationship between dormancy cues, such as temperature and photoperiod, can shift, with as yet unknown effects on the timing of dormancy and resulting ecosystem dynamics. Future ecosystem dynamics are difficult to predict in part because we do not fully understand the cues that regulate the initiation or termination of dormancy, or how dormancy traits may change over time through acclimation and adaptation.
    Description: 2020-10-14
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-27
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Meaders, J. L., de Matos, S. N., & Burgess, D. R. A pushing mechanism for microtubule aster positioning in a large cell type. Cell Reports, 33(1), (2020): 108213, doi:10.1016/j.celrep.2020.108213.
    Description: After fertilization, microtubule (MT) sperm asters undergo long-range migration to accurately position pronuclei. Due to the large sizes of zygotes, the forces driving aster migration are considered to be from pulling on the astral MTs by dynein, with no significant contribution from pushing forces. Here, we re-investigate the forces responsible for sperm aster centration in sea urchin zygotes. Our quantifications of aster geometry and MT density preclude a pulling mechanism. Manipulation of aster radial lengths and growth rates, combined with quantitative tracking of aster migration dynamics, indicates that aster migration is equal to the length of rear aster radii, supporting a pushing model for centration. We find that dynein inhibition causes an increase in aster migration rates. Finally, ablation of rear astral MTs halts migration, whereas front and side ablations do not. Collectively, our data indicate that a pushing mechanism can drive the migration of asters in a large cell type.
    Description: We would like to thank Dr. Jesse Gatlin for sending us the Tau-mCherry fusion protein for imaging live MTs. We would also like to thank Dr. Timothy Mitchison, Dr. Christine Field, and Dr. James Pelletier for supplying us with CA4, p150-CC1, and EB1-GFP peptides, as well as for fruitful discussions. Finally, we would like to thank Dr. Charles Shuster and Leslie Toledo-Jacobo for constructive feedback when preparing the manuscript. We thank Bret Judson and the Boston College Imaging Core for infrastructure and support. This material is based upon work supported by NSF grant no. 124425 to D.R.B.
    Keywords: Dynein ; Aster ; Microtubule ; Centrosome ; Pronucleus ; Fertilization ; Aster position
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Stolp, Z. D., Kulkarni, M., Liu, Y., Zhu, C., Jalisi, A., Lin, S., Casadevall, A., Cunningham, K. W., Pineda, F. J., Teng, X., & Hardwick, J. M. Yeast cell death pathway requiring AP-3 vesicle trafficking leads to vacuole/lysosome membrane permeabilization. Cell Reports, 39(2), (2022): 110647, https://doi.org/10.1016/j.celrep.2022.110647.
    Description: Unicellular eukaryotes have been suggested as undergoing self-inflicted destruction. However, molecular details are sparse compared with the mechanisms of programmed/regulated cell death known for human cells and animal models. Here, we report a molecular cell death pathway in Saccharomyces cerevisiae leading to vacuole/lysosome membrane permeabilization. Following a transient cell death stimulus, yeast cells die slowly over several hours, consistent with an ongoing molecular dying process. A genome-wide screen for death-promoting factors identified all subunits of the AP-3 complex, a vesicle trafficking adapter known to transport and install newly synthesized proteins on the vacuole/lysosome membrane. To promote cell death, AP-3 requires its Arf1-GTPase-dependent vesicle trafficking function and the kinase Yck3, which is selectively transported to the vacuole membrane by AP-3. Video microscopy revealed a sequence of events where vacuole permeability precedes the loss of plasma membrane integrity. AP-3-dependent death appears to be conserved in the human pathogenic yeast Cryptococcus neoformans.
    Description: Funding sources: National Institutes of Health, United States grants AI144373 and NS127076 (J.M.H.), AI115016 and AI153414 (K.W.C.), and AI052733, AI152078, and HL059842 (A.C.); National Natural Science Foundation of China 31970550; and the Priority Academic Program Development of the Jiangsu Higher Education Institutes (X.T.).
    Keywords: Yeast ; Programmed cell death ; Vesicle trafficking ; AP-3 ; Vacuole ; Cryptococcus ; Yck3 ; Regulated cell death ; Lysosome ; Vacuolar membrane permeabilization
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © University of Chicago, 2019. This article is posted here by permission of University of Chicago for personal use, not for redistribution. The definitive version was published in Biological Bulletin 237(2), (2019): 76-89, doi: 10.1086/704694.
    Description: Diapause at depth is considered an integral part of the life cycle of Calanus copepods, but few studies have focused on the Arctic species Calanus glacialis and Calanus hyperboreus. By analyzing a large set of pan-arctic observational data compiled from multiple sources, we show that Arctic Calanus has a broad depth distribution in winter, indicating that diapause at depth is a facultative strategy. Both species’ vertical distributions tend to deepen in winter and to be deeper and broader with increasing bottom depth, while individuals are aggregated closer to the sea floor in shallow areas. These results indicate that Arctic Calanus species pursue a relatively deep diapause habitat but are topographically blocked on the shelves. Interspecific differences in depth distribution during diapause suggest the importance of predation. The larger C. hyperboreus has a deeper diapause depth than C. glacialis, potentially to alleviate predation pressure or as a result of predation loss near the surface. Moreover, the mean depth of C. hyperboreus in winter is negatively associated with latitude, indicating a shoaling of the diapause population in the central Arctic Ocean where predation pressure is lower. Our results suggest a complex diapause behavior by Arctic Calanus, with implications for our view of the species’ roles in Arctic ecosystems.
    Description: KØK was supported by the Woods Hole Oceanographic Institution John H. Steele Postdoctoral Scholar award and the VISTA Scholarship (http://www.vista.no). We are grateful to Sigrún Jonasdóttir, Susan Mills, Imme Rutzen, Russ Hopcroft, Peter Munk, and Rasmus Swalethorp for kindly sharing observational data. We would like to thank two anonymous reviewers for insightful and constructive suggestions that helped us improve the manuscript.
    Description: 2020-09-17
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: Author Posting. © University of Chicago, 2019. This article is posted here by permission of University of Chicago for personal use, not for redistribution. The definitive version was published in Biological Bulletin 237(2), (2019): 90-110, doi: 10.1086/705234.
    Description: Calanus finmarchicus and Calanus glacialis are keystone zooplankton species in North Atlantic and Arctic marine ecosystems because they form a link in the trophic transfer of nutritious lipids from phytoplankton to predators on higher trophic levels. These calanoid copepods spend several months of the year in deep waters in a dormant state called diapause, after which they emerge in surface waters to feed and reproduce during the spring phytoplankton bloom. Disruption of diapause timing could have dramatic consequences for marine ecosystems. In the present study, Calanus C5 copepodites were collected in a Norwegian fjord during diapause and were subsequently experimentally exposed to the water-soluble fraction of a naphthenic North Sea crude oil during diapause termination. The copepods were sampled repeatedly while progressing toward adulthood and were analyzed for utilization of lipid stores and for differential expression of genes involved in lipid metabolism. Our results indicate that water-soluble fraction exposure led to a temporary pause in lipid catabolism, suggested by (i) slower utilization of lipid stores in water-soluble fraction-exposed C5 copepodites and (ii) more genes in the β-oxidation pathway being downregulated in water-soluble fraction-exposed C5 copepodites than in the control C5 copepodites. Because lipid content and/or composition may be an important trigger for termination of diapause, our results imply that the timing of diapause termination and subsequent migration to the surface may be delayed if copepods are exposed to oil pollution during diapause or diapause termination. This delay could have detrimental effects on ecosystem dynamics.
    Description: We thank the Department of Biology at the Norwegian University of Science and Technology (NTNU) for additional funding for ES’s stay at Woods Hole Oceanographic Institution (WHOI); Christoffer H. Hilde for help in the field and in the lab; Siv Anina Etter, Øystein Leiknes, Sofia Soloperto, and Clara P. Igisch for help with the fieldwork; Justyna Świeżak, Mari-Ann Østensen, and Signe D. Løvmo for experimental assistance; and Hanny Rivera for help with bioinformatic analyses at WHOI. The RNA-sequencing work was provided by the Genomics Core Facility (GCF). The GCF is funded by the Faculty of Medicine and Health Sciences at NTNU and the Central Norway Regional Health Authority. AMT was funded by the National Science Foundation (award no. OPP-1746087).
    Description: 2020-10-04
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: Author Posting. © University of Chicago, 2020. This article is posted here by permission of University of Chicago for personal use, not for redistribution. The definitive version was published in Biological Bulletin 238(1), (2020): 1-11, doi:10.1086/707837.
    Description: While there is behavioral and anatomical evidence that coleoid cephalopods use their arms to “taste” substances in the environment, the neurophysiology of chemosensation has been largely unexamined. The range and sensitivity of detectable chemosensory stimuli, and the processing of chemosensory information, are unknown. To begin to address these issues, we developed a technique for recording neurophysiological responses from isolated arms, allowing us to test responses to biologically relevant stimuli. We tested arms from both a pelagic species (Doryteuthis pealeii) and a benthic species (Octopus bimaculoides) by attaching a suction electrode to the axial nerve cord to record neural activity in response to chemical stimuli. Doryteuthis pealeii arms showed anecdotal responses to some stimuli but generally did not tolerate the preparation; tissue was nonviable within minutes ex vivo. Octopus bimaculoides arms were used successfully, with tissue remaining healthy and responsive for several hours. Arms responded strongly to fish skin extract, glycine, methionine, and conspecific skin extract but not to cephalopod ink or seawater controls. Motor responses were also observed in response to detected stimuli. These results suggest that chemosensory receptor cells on O. bimaculoides arms were able to detect environmentally relevant chemicals and drive local motor responses within the arm. Further exploration of potential chemical stimuli for O. bimaculoides arms, as well as investigations into the neural processing within the arm, could enhance our understanding of how this species uses its arms to explore its environment. While not successful in D. pealeii, this technique could be attempted with other cephalopod species, as comparative questions remain of interest.
    Description: This research was supported by the Grass Foundation and Denison University. Animals were provided by the Marine Resource Center and the Cephalopod Breeding Initiative at the MBL, which also provided excellent animal care and training in animal handling. Discussions with Lisa Abbo, Roger Hanlon, members of MBL Cephalopod Discussion Group 2018, and members of the Grass Lab 2018 were invaluable to the design and execution of these experiments.
    Description: 2021-02-17
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-08-30
    Description: Most tropical corals live in symbiosis with Symbiodiniaceae algae whose photosynthetic production of oxygen (O2) may lead to excess O2 in the diffusive boundary layer (DBL) above the coral surface. When flow is low, cilia-induced mixing of the coral DBL is vital to remove excess O2 and prevent oxidative stress that may lead to coral bleaching and mortality. Here, we combined particle image velocimetry using O2-sensitive nanoparticles (sensPIV) with chlorophyll (Chla)-sensitive hyperspectral imaging to visualize the microscale distribution and dynamics of ciliary flows and O2 in the coral DBL in relation to the distribution of Symbiodiniaceae Chla in the tissue of the reef building coral, Porites lutea. Curiously, we found an inverse relation between O2 in the DBL and Chla in the underlying tissue, with patches of high O2 in the DBL above low Chla in the underlying tissue surrounding the polyp mouth areas and pockets of low O2 concentrations in the DBL above high Chla in the coenosarc tissue connecting neighboring polyps. The spatial segregation of Chla and O2 is related to ciliary-induced flows, causing a lateral redistribution of O2 in the DBL. In a 2D transport-reaction model of the coral DBL, we show that the enhanced O2 transport allocates parts of the O2 surplus to areas containing less chla, which minimizes oxidative stress. Cilary flows thus confer a spatially complex mass transfer in the coral DBL, which may play an important role in mitigating oxidative stress and bleaching in corals.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: Author Posting. © University of Chicago, 2020. This article is posted here by permission of University of Chicago for personal use, not for redistribution. The definitive version was published in Biological Bulletin 238(3), (2020): 206-213. doi:10.1086/709504.
    Description: Of the more than 150 ctenophore species, the oceanic ctenophore Eurhamphaea vexilligera is notable for its bright orange-yellow ink, secreted from numerous small vesicles that line its substomodeal comb rows. To date, in situ observations by scuba divers have proved the most fruitful method of observing these animals’ natural behavior. We present the results of one such contemporary scuba-based observation of E. vexilligera, conducted in the Gulf Stream waters off the coast of Florida, using high-resolution photography and video. Utilizing underwater camera systems purpose built for filming gelatinous zooplankton, we observed E. vexilligera ink release and swimming behavior in situ. From these data, we describe the timeline and mechanics of E. vexilligera ink release in detail, as well as the animal’s different swimming behaviors and resulting ink dispersal patterns. We also describe a rolling swimming behavior, accompanied and possibly facilitated by a characteristic change in overall body shape. These observations provide further insight into the behavioral ecology of this distinctive ctenophore and may serve as the foundation for future kinematic studies.
    Description: This work was funded by National Science Foundation awards OCE-1829945 to BJG, OCE-1829932 to KRS, OCE-1829913 to SPC, and OCE-1830015 to JHC. We thank the captain and crew of Calypso Dive Charters’ Miss Jackie for their assistance and field expertise, as well as two anonymous reviewers, whose insightful comments have improved the quality of the manuscript.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Reusch, S., Biswas, A., Hirst, W. G., & Reber, S. Affinity purification of label-free tubulins from xenopus egg extracts. STAR Protocols, 1(3), (2020): 100151, doi:10.1016/j.xpro.2020.100151.
    Description: Cytoplasmic extracts from unfertilized Xenopus eggs have made important contributions to our understanding of microtubule dynamics, spindle assembly, and scaling. Until recently, these in vitro studies relied on the use of heterologous tubulin. This protocol allows for the purification of physiologically relevant Xenopus tubulins in milligram yield, which are a complex mixture of isoforms with various post-translational modifications. The protocol is applicable to any cell or tissue of interest. For complete details on the use and execution of this protocol, please refer to Hirst et al. (2020).
    Description: This article was prompted by our stay at the Marine Biological Laboratory (MBL), Woods Hole, MA, in the summer of 2016 funded by the Princeton-Humboldt Strategic Partnership Grant together with the lab of Sabine Petry (Princeton University). We are grateful to the National Xenopus Resource (NXR) for supplying frogs. For mass spectrometry, we would like to acknowledge the assistance of Benno Kuropka and Chris Weise from the Core Facility BioSupraMol supported by the Deutsche Forschungsgemeinschaft (DFG). We thank the Protein Expression Purification and Characterization (PEPC) facility at the MPI-CBG; in particular, we thank Aliona Bogdanova and Barbara Borgonovo. We thank all former and current members of the Reber lab for discussions and helpful advice, in particular Christoph Hentschel and Soma Zsoter for technical assistance. S.R. acknowledges funding from the IRI Life Sciences (Humboldt-Universität zu Berlin, Excellence Initiative/DFG). W.H. was supported by the Alliance Berlin Canberra co-funded by a grant from the Deutsche Forschungsgemeinschaft (DFG) for the International Research Training Group (IRTG) 2290 and the Australian National University.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Katz, H. R., Fouke, K. E., Losurdo, N. A., & Morgan, J. R. Recovery of burrowing behavior after spinal cord injury in the larval sea lamprey. Biological Bulletin, 239(3), (2020): 174-182, doi:10.1086/711365.
    Description: Following traumatic spinal cord injury, most mammalian species are unable to achieve substantial neuronal regeneration and often experience loss of locomotor function. In contrast, larval sea lampreys (Petromyzon marinus) spontaneously recover normal swimming behaviors by 10–12 weeks post-injury, which is supported by robust regeneration of spinal axons. While recovery of swimming behavior is well established, the lamprey’s ability to recover more complex behaviors, such as burrowing, is unknown. Here we evaluated the lamprey’s ability to burrow into a sand substrate over the typical time course of functional recovery (1–11 weeks post-injury). Compared to uninjured control lampreys, which burrow rapidly and completely, spinal-transected animals did not attempt burrowing until 2 weeks post-injury; and they often did not succeed in fully covering their entire body in the sand. Burrowing behavior gradually improved over post-injury time, with most animals burrowing partially or completely by 9–11 weeks post-injury. Burrowing behavior has two components: the initial component that resembles swimming with propagated body undulations and the final component that pulls the tail under the sand. While the duration of the initial component did not differ between control and spinal-transected animals across the entire recovery period, the duration of the final component in spinal-transected animals was significantly longer at all time points measured. These data indicate that, after spinal cord injury, lampreys are able to recover burrowing behaviors, though some deficits persist.
    Description: We thank Eduardo Guadarrama for performing lamprey transection surgeries and Dr. Eric D. Tytell (Tufts University) for valuable discussion and feedback, as well the Marine Biological Laboratory for providing funding support. NAL was funded in part by a National Science Foundation-sponsored Research Experiences for Undergraduates (REU) program at the Marine Biological Laboratory: “Biological Discovery in Woods Hole” (grant 1659604; PIs: A. Mensinger, V. Martinez Acosta).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...