ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Nature Publishing Group  (38,622)
  • American Institute of Physics (AIP)  (31,708)
  • Nature Publishing Group (NPG)
  • 2020-2023  (5)
  • 1985-1989  (50,454)
  • 1955-1959  (19,871)
Collection
Years
Year
  • 1
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  EPIC3London, United Kingdom, Nature Publishing Group
    Publication Date: 2016-01-19
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: image/jpeg
    Format: image/jpeg
    Format: image/jpeg
    Format: image/jpeg
    Format: image/jpeg
    Format: image/jpeg
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-06-20
    Description: Between 2003-2016, the Greenland ice sheet (GrIS) was one of the largest contributors to sea level rise, as it lost about 255 Gt of ice per year. This mass loss slowed in 2017 and 2018 to about 100 Gt yr−1. Here we examine further changes in rate of GrIS mass loss, by analyzing data from the GRACE-FO (Gravity Recovery and Climate Experiment – Follow On) satellite mission, launched in May 2018. Using simulations with regional climate models we show that the mass losses observed in 2017 and 2018 by the GRACE and GRACE-FO missions are lower than in any other two year period between 2003 and 2019, the combined period of the two missions. We find that this reduced ice loss results from two anomalous cold summers in western Greenland, compounded by snow-rich autumn and winter conditions in the east. For 2019, GRACE-FO reveals a return to high melt rates leading to a mass loss of 223 ± 12 Gt month−1 during the month of July alone, and a record annual mass loss of 532 ± 58 Gt yr−1.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  EPIC3Nature Climate Change, Nature Publishing Group, 12(3), pp. 249-255
    Publication Date: 2022-06-20
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-08-15
    Description: Anaerobic oxidation of ammonium (anammox) in oxygen minimum zones (OMZs) is a major pathway of oceanic nitrogen loss. Ammonium released from sinking particles has been suggested to fuel this process. During cruises to the Peruvian OMZ in April–June 2017 we found that anammox rates are strongly correlated with the volume of small particles (128–512 µm), even though anammox bacteria were not directly associated with particles. This suggests that the relationship between anammox rates and particles is related to the ammonium released from particles by remineralization. To investigate this, ammonium release from particles was modelled and theoretical encounters of free-living anammox bacteria with ammonium in the particle boundary layer were calculated. These results indicated that small sinking particles could be responsible for ~75% of ammonium release in anoxic waters and that free-living anammox bacteria frequently encounter ammonium in the vicinity of smaller particles. This indicates a so far underestimated role of abundant, slow-sinking small particles in controlling oceanic nutrient budgets, and furthermore implies that observations of the volume of small particles could be used to estimate N-loss across large areas.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-08-11
    Description: The methanogenic degradation of oil hydrocarbons can proceed through syntrophic partnerships of hydrocarbon-degrading bacteria and methanogenic archaea1,2,3. However, recent culture-independent studies have suggested that the archaeon ‘Candidatus Methanoliparum’ alone can combine the degradation of long-chain alkanes with methanogenesis4,5. Here we cultured Ca. Methanoliparum from a subsurface oil reservoir. Molecular analyses revealed that Ca. Methanoliparum contains and overexpresses genes encoding alkyl-coenzyme M reductases and methyl-coenzyme M reductases, the marker genes for archaeal multicarbon alkane and methane metabolism. Incubation experiments with different substrates and mass spectrometric detection of coenzyme-M-bound intermediates confirm that Ca. Methanoliparum thrives not only on a variety of long-chain alkanes, but also on n-alkylcyclohexanes and n-alkylbenzenes with long n-alkyl (C≥13) moieties. By contrast, short-chain alkanes (such as ethane to octane) or aromatics with short alkyl chains (C≤12) were not consumed. The wide distribution of Ca. Methanoliparum4,5,6 in oil-rich environments indicates that this alkylotrophic methanogen may have a crucial role in the transformation of hydrocarbons into methane.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-10-31
    Description: The statistical properties of seismicity are known to be affected by several factors such as the rheological parameters of rocks. We analysed the earthquake double-couple as a function of the faulting type. Here we show that it impacts the moment tensors of earthquakes: thrust- faulting events are characterized by higher double-couple components with respect to strike- slip- and normal-faulting earthquakes. Our results are coherent with the stress dependence of the scaling exponent of the Gutenberg-Richter law, which is anticorrelated to the double- couple. We suggest that the structural and tectonic control of seismicity may have its origin in the complexity of the seismogenic source marked by the width of the cataclastic damage zone and by the slip of different fault planes during the same seismic event; the sharper and concentrated the slip as along faults, the higher the double-couple. This phenomenon may introduce bias in magnitude estimation, with possible impact on seismic forecasting.
    Description: Published
    Description: 258
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: double couple ; damage zone ; different fault type ; seismicity ; tectonics ; fault type ; seismicity ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 91 (1989), S. 4455-4461 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Intermolecular potentials for Ar and Kr interacting with HBr are obtained by least-squares fitting of potential parameters to data obtained from the molecular-beam microwave spectra of the Ar–HBr and Kr–HBr van der Waals complexes. The equilibrium geometry is linear Rg–H–Br in each case, but there are substantial secondary minima at the linear Rg–Br–H geometries; for Ar–HBr, the secondary minimum is only about 5 cm−1 shallower than the primary minimum. This potential feature is found to explain the anomalous H/D isotope effects in centrifugal distortion constants that have been observed for the Rg–HBr complexes. It is predicted that Ar–HBr will have a very low-energy bending state, only 11 cm−1 above the ground state, arising from the secondary minimum.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 91 (1989), S. 4477-4484 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Excited rotational level dependence of the external magnetic field effects both on intensity and on decay of fluorescence of pyrazine vapor has been carefully examined for the zero-point vibrational level in S1 with a field strength of 0–170 G. The magnetic quenching of the slow fluorescence becomes more effective with increasing rotational quantum number J' of the excited level, and the field strength at which the amount of fluorescence quenching becomes one-half of the total amount of quenching at the saturated fields is roughly proportional to (2J'+1)−1. The magnetic quenching is also found to depend on K' of the excited level. The rotational level dependence of the magnetic quenching of the slow fluorescence is related to a difference in the number of the triplet levels coupled to the optically excited singlet rovibronic level, based on the spin decoupling mechanism of the singlet–triplet mixed level.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 91 (1989), S. 4499-4503 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We have observed many collision-induced-dipole (CID) absorption bands arising from the transitions between quasimolecular ground and high-lying (n≤10) states in the strontium–rare-gas systems. For each absorption band, we have measured the energy shift of the absorption peak from the energy of the correlating atomic forbidden transition and the effective oscillator strength per unit perturber density fCID/Np. The shift is roughly proportional to the electron scattering length L0 for each rare-gas atom, whereas the fCID/Np is roughly proportional to L20. The shift decreases in general as the principal quantum number n increases, and increases as one goes from the s state to the d state, and to the degenerate manifold state with l≥3. These general features of the shift and fCID/Np are consistent with the predictions by a simple Fermi-potential model, suggesting the important role of the interaction between a Rydberg electron and a rare-gas atom in the CID absorption processes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 91 (1989), S. 4582-4586 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The ν2 band of the silylene SiH2 molecule in X˜ 1 A1 was observed for the first time in the gas phase by using infrared diode laser kinetic spectroscopy. Silylene molecules were generated by the photolysis of phenylsilane at 193 nm. The observed spectrum was analyzed to determine the rotational and centrifugal distortion constants in the ground and v2 =1 states and the band origin ν0 =998.6241(3) cm−1 with one standard deviation in parentheses. The significance of the derived parameters is discussed in detail.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...