ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer  (491,837)
  • Elsevier  (446,857)
  • Wiley  (108,373)
  • Institute of Physics  (88,391)
  • 2020-2023  (498)
  • 1985-1989  (624,235)
  • 1980-1984  (510,725)
Collection
Language
Years
Year
  • 1
    Publication Date: 2022-12-27
    Description: The characterization of the fling-step represents a challenging task due to the shortage of near-source records with permanent tectonic displacement and the limitation in retrieving the fling-amplitude from accelerometric waveforms. In recent years, innovative ground-motion processing techniques have been developed for a more accurate estimation of both fling-displacements and spectral displacements in contrast to traditional bandpass filtering, although their application is still unusual. In this paper, we exploit the newly released dataset of the Near-Source Strong-motion records (NESS2) uniformly processed with the extended BASeline COrrection technique (eBASCO), against which we propose: (1) a new empirically-based ground motion model (GMM) for the prediction of the fling-step, and (2) an adjustment factor of the spectral displacements predicted by a reference GMM to account for the contribution of the fling-step at long periods. Such models are in agreement with observations and existing GMMs, and thus could be advantageously employed in seismic hazard analyses.
    Description: Published
    Description: 107294
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-12-27
    Description: Santiaguito, Guatemala, represents one of the best cases of active lava dome complex in the world, producing lava flow effusion, weak explosive activity, and cycles of lava dome extrusion over varying timescales. Since the inception in 1922, it has shown a remarkable constant eruptive activity, characterized by effusion of blocky domes and lava flows punctuated by moderate explosions of gas-and-ash and pyroclastic flows. In this study, we reconstruct the time evolution of discharge rates of Santiaguito across one entire century, from 1922 to 2021, combining, for the more recent activity, new satellite thermal data. By using discrete Fourier transform (DFT) and Morlet wavelet analyses, we identify three fundamental periodicities in subsets of the 1922–2021 time-series: (i) long term (ca. 10 years), (ii) intermediate term (ca. 3.5 years), and (iii) short term (from ca. 1 year to ca. 3 months), which are comparable with those observed at other lava dome eruptions at calc-alkaline volcanoes. Such inferred periodicities provide a powerful tool for the interpretation of the non-linear eruptive behaviour and represent a pivotal benchmark for numerical modelling aimed to reconstruct the dynamics of the magma feeding system based on a time-averaged discharge rate dataset.
    Description: Published
    Description: 107
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-12-27
    Description: The 1915, Mw6.7, Fucino earthquake is one of the most destructive events occurred in the central-southern Apennines (Central Italy) in pre-instrumental era, involving normal faulting in a deep alluvial basin. This study shows the application of the empirical non-ergodic approach (NESK method) for mapping ground shaking related to this historical event, taking into account the regional features of source, propagation and site contributions. Corrections of the source-region and spatially correlated maps of site and path residuals are combined with median prediction at the reference rock (i.e. without site amplification) to generate spatially variable ground shaking and associated variability in terms of peak ground acceleration and spectral ordinates at vibration periods from 0.01s to 2s. The method captures the main spatial non-stationarities and anisotropies of the shaking fields produced by this earthquake in and around the Fucino basin. In particular, we obtain patterns of seismic motion quite in accordance with the results of other methods and the macroseismic intensity field. Marked amplifications of the shaking in the long-periods are also captured, due to the coupling of 3D site effects, especially in the deeper portion of the basin, with propagation effects mainly focused towards the eastern part of the fault. These results confirm that the non-ergodic shaking scenarios from NESK can provide useful indications even in the case of very complex seismological and geological contexts, such as in the case of strong events in deep sedimentary basins.
    Description: Published
    Description: 107622
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-12-27
    Description: Magmas often experience severe disequilibrium conditions during their migration through the Earth's crust and the subsequent emplacement on its surface. During their transport, magmas are subjected to a wide range of cooling (q) and deformation rates (), generating physico-chemical perturbations in the magmatic system able to inhibit or promote crystallization processes. Quantifying the magnitude and timescale of kinetic effects is essential to correctly constrain the rheological evolution of magmas and their ability to flow. Here we present a suite of cooling deformation experiments (CDE) conducted on a basalt from Mt. Etna (Sicily, Italy) to disentangle and model the concurrent effects of q (from 1 to 10 °C/min) and (from 1 to 10 s−1) on the rheology of the system. The analysis of the temporal evolution of viscosity indicates that both q and strongly affect the onset of crystallization and achievement of a rheological cut-off over time, which represents the steep viscosity increase responsible for inhibiting magma flow. Both these rheological thresholds occur at lower T and earlier in time with increasing q, as well as at higher T and earlier in time with increasing . To reproduce the observed effects of crystallization on the apparent viscosity, we adopt a stretched exponential function that identifies two main crystallization regimes: i) a first shear-induced crystallization regime, characterized by a gentle viscosity increase and ii) a second cooling-dominated regime, marked by a steeper viscosity increase. The relative extent of these crystallization regimes strictly depends on the interplay between q and on the crystallization kinetics and suggest a first order control of q and a subordinate role of .
    Description: Published
    Description: 117725
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-12-22
    Description: This chapter aims at introducing the reader to general concepts about the main forcings of the Mediterranean Sea, in terms of exchanges through the Strait of Gibraltar, and air-sea exchanges of heat, freshwater, and momentum. These forcings are also responsible for the peculiar characteristics of Mediterranean water masses. Therefore, the chapter continues with giving a general explanation on water mass analysis, and then it describes the properties and vertical and horizontal distributions of the main Mediterranean water masses. To conclude, the reader is introduced to the use of other (biogeochemical, and chemical) tracers of water masses, with a focus on the Mediterranean Sea.
    Type: Book chapter , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-12-22
    Description: The geological carbon cycle has played a key role in controlling climate throughout Earth’s history. For the last ∼ 3 billion years plate tectonics has driven subduction. Subducted slabs have transported CO_2 from the lithosphere, hydrosphere, and atmosphere into the Earth, from where it may be released back to the surface through processes such as arc volcanism or can be stored in the deep interior over geological time. Carbonate-bearing sediments and basalts of altered oceanic crust are the primary media by which carbon is subducted. Therefore, quantifying the depth and amount of CO_2 released from different carbonate-bearing lithologies during subduction is fundamental to understanding whether CO_2 is recycled through arc volcanism or buried in the mantle. The magnitude of CO_2 released from subducting slabs at fore- and sub-arc depths is controlled by processes including ocean crust alteration (i.e., carbonation), metamorphic decarbonation, carbonate dissolution and slab-melting. However, the relative contribution of these processes to overall slab decarbonation is still debated, and will be complex given the variety of sedimentary lithologies and subduction geodynamics. Here, we present a global arc-by-arc lithology-specific analysis of the magnitude of slab CO_2 released purely by metamorphic decarbonation of carbonate-bearing sediment and basalt during subduction of altered oceanic crust, using a thermodynamically rigorous model. We find that metamorphic decarbonation is highly efficient in low carbonate sediments, such as carbonated clay, and in carbonated basalts of altered oceanic crust, causing all of their CO_2 to be removed. Sediments with medium and higher carbonate contents, such as chalk and limestone, are only partially decarbonated, but the combination of metamorphic decarbonation and carbonate dissolution promotes efficient carbon loss. Together they can explain observed magmatic CO_2 emissions in carbonate-rich arcs. Warm slabs, such as Mexico and Cascadia, produce complete metamorphic decarbonation of carbonate minerals beneath fore-arcs. Under more common cold and intermediate thermal regimes metamorphic decarbonation of carbonate minerals occurs at depths between ∼ 80 and 170 km ( ∼ 2.3 to 5.5 GPa) promoting CO_2 input into the mantle sources of volcanic arcs. Overall, our results demonstrate that sub-arc decarbonation is typically considered an important potential source of slab-derived CO_2 , which needs to be considered together with carbonate dissolution to explain observed volcanic CO_2 emissions. In many arcs the modelled CO_2 flux from sediment and basalts of altered oceanic crust into the wedge exceeds the observed CO 2 output suggesting that the mantle wedge and arc lithosphere may sequester some CO_2 .
    Description: Published
    Description: 117945
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-12-19
    Description: New sedimentological data of facies and diagenesis as well as chronological data including strontium (87Sr/86Sr)-isotope ratios and uranium (U)-series dating, radiocarbon (14C) accelerator mass spectrometry (AMS) dating and biostratigraphy from elevated reef terraces (makatea) in the southern Cook Islands of Mangaia, Rarotonga and Aitutaki contribute to controversial discussions regarding age and sea-level relationships of these occurrences during the Neogene and Quaternary. The oldest limestones of the uplifted makatea island of Mangaia include reef-related facies which are mid-Miocene in age, based on new Sr-isotope and biostratigraphical data. In between these older deposits and the lowest coastal reef terrace of marine isotope stage (MIS) 5e, various older Pleistocene reef-related facies were identified. Based on Sr-isotope ratios, these were deposited during earlier Pleistocene highstands (as old as 2.28 Ma). Rare reef terraces on Rarotonga belong to the Plio-Pleistocene and the late Miocene, according to 87Sr/86Sr ratios. The late Miocene age is enigmatic as it exceeds the age of subaerially exposed volcanic rocks of Rarotonga island. The fossil reef could have formed on an older submarine volcanic high that was later displaced by younger volcanism to its present position, or the Sr-age could be too old due to diagenetic resetting. The Plio-Pleistocene Rarotonga reef terraces are overlain irregularly by Holocene reef deposits that are interpreted as storm rubble. Reef terraces on Aitutaki represent evidence of a higher-than-present (up to 1 m) sea-level during the late Holocene, based on 14C AMS age data. They are very similar to elevated late Holocene reefs of adjacent French Polynesia with regard to composition, elevation and age.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-12-19
    Description: A comprehensive study of the Earth system and its related processes requires a holistic examination and understanding of multidimensional data acquired with a large number of different sensors or produced by various models. To this end, the Digital Earth project developed a set of software solutions to study environmental data sets using visual approaches. In the following chapter, we present three data visualization products developed to deal with the challenges of the analysis and exploration of environmental data.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-12-19
    Description: Reliable data are the base of all scientific analyses, interpretations and conclusions. Evaluating data in a smart way speeds up the process of interpretation and conclusion and highlights where, when and how additionally acquired data in the field will support knowledge gain. An extended SMART monitoring concept is introduced which includes SMART sensors, DataFlows, MetaData and Sampling approaches and tools. In the course of the Digital Earth project, the meaning of SMART monitoring has significantly evolved. It stands for a combination of hard- and software tools enhancing the traditional monitoring approach where a SMART monitoring DataFlow is processed and analyzed sequentially on the way from the sensor to a repository into an integrated analysis approach. The measured values itself, its metadata, and the status of the sensor, and additional auxiliary data can be made available in real time and analyzed to enhance the sensor output concerning accuracy and precision. Although several parts of the four tools are known, technically feasible and sometimes applied in Earth science studies, there is a large discrepancy between knowledge and our derived ambitions and what is feasible and commonly done in the reality and in the field.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-12-14
    Description: New constraints were set on the age of marine deposits in the Pontine Plain and of the related sea level indicators on the Tyrrhenian Sea coast of central Italy by twelve new 40Ar/39Ar dates on detrital sanidine from these deposits. By combining a new geomorphologic analysis and previous morpho-pedostratigraphic studies with these geochronological constraints we reconstructed the geometry of four marine terraces and correlated these with the highstands during the marine isotopic stages (MIS) 9.3, 7.5, 5.5 and 5.3. Results point to a progressive tilting of the terraces, the elevation increasing from the SE to the NW due to differential tectonic uplift that occurred over the last 300 ka. We identified a MIS 9 sea level at 30 - 25 m asl in the northwestern sector, whereas the MIS 7.5 sea level reached a maximum of 24 m asl in the NWand descended to 18 m asl in the central sector. Moderate tilting affected the MIS 5.5 sea level, with an elevation of 12 to 9.5 m asl in between the Anzio and Circeo headlands. Finally, an undeformed MIS 5.3 sea level at ca. 3 m asl is indicated throughout this coastal reach, confirming previous data suggesting a much higher absolute sea level during this highstand with respect to the d18O-derived predicted level.
    Description: Published
    Description: 107866
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: Marine terraces ; MIS 5 sea level ; Pontine Plain ; Tyrrhenian Sea ; 04.04. Geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...