ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 03.02. Hydrology  (6)
  • Elsevier  (5)
  • Istituto Nazionale di Oceanografia e di Geofisica Sperimentale  (1)
  • Cell Press
  • Oxford University Press
  • 2020-2023  (6)
  • 2000-2004
  • 1955-1959
  • 1
    Publikationsdatum: 2022-03-07
    Beschreibung: Comprehensive hydrogeochemical studies have been conducted in the Campi Flegrei volcanic aquifer since late 20th century due to the volcanic unrest. In the last decade, groundwater samples were grouped based on the dominant anion species (i.e. bicarbonate, sulfate and chloride) to explain the general hydrogeochemical processes. In this article, 44 groundwater samples are collected from Campi Flegrei aquifer to geochemically and spatially capture the main characteristics of the groundwater body. The hierarchical clustering algorithm is then performed on proportion of bicarbonate, sulfate and chloride, and the optimum number of clusters are determined regarding the results of deep hydrogeochemical investigations published in the past. The collected samples are categorized in the following groups: (1) bicarbonate-rich groundwater; (2) chlorine-rich groundwater; (3) sulfate-rich groundwater; and (4) mixed groundwater. The first group (As = 158.2 ± 169 μg/l, electric conductivity = 1,732.1 ± 1,086 μS/cm and temperature = 25.6 ± 8 ◦C) is mainly derived from poor arsenic meteoric water, but there is significant thermal/seawater contribution in the second one (As = 1,457.8 ± 2,210 μg/l, electric conductivity = 20,118.3 ± 11,139 μS/cm and temperature = 37.1 ± 20 ◦C). Interaction of the bicarbonate-rich groundwater and hydrothermal vapors gives rise to the sulfate-rich groundwater (As = 847.2 ± 679 μg/l, electric conductivity = 3,940.0 ± 540 μS/cm and temperature = 82.8 ± 3 ◦C) around Solfatara volcano. The mixed groundwater (As = 451.4 ± 388 μg/l, electric conductivity = 4,482.9 ± 4,027 μS/cm and temperature = 37.1 ± 16 ◦C) is observed where the three main groundwater groups undergo a mixing process, depending on the hydrogeology of the volcanic aquifer. Contrary to the bicarbonate- and sulfate-rich groundwater, the chlorine-rich and mixed groundwater generally occurs at low piezometric levels (approximately 〈1 m above sea level) near the coastline. The hierarchical cluster analysis provides more information about the volcanic aquifer, particularly when compositional data analysis is applied to study hydrogeochemistry of the homogeneous groundwater groups and to uncover the relationships between variables. Addressing compositional nature of data is recommended in the future studies for developing new tools that help deeper understanding of groundwater evolution in volcanic aquifers and identifying promising precursors of volcanic eruption.
    Beschreibung: Published
    Beschreibung: 106922
    Beschreibung: 4V. Processi pre-eruttivi
    Beschreibung: 2IT. Laboratori analitici e sperimentali
    Beschreibung: JCR Journal
    Schlagwort(e): Hierarchical cluster analysis ; Groundwater evolution ; Hydrothermal system ; Precursors of volcanic eruption ; 03.02. Hydrology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-02-14
    Beschreibung: Archaeological sites are extremely vulnerable to the impacts of weather-related events, which may lead to irreparable damages to cultural heritage. Here an assessment of the debris-flow hazard for the UNESCO site of Roman Villa del Casale (Italy) is carried out, through a combination of historical analyses, field surveys, geomorphological and hydrological investigations and two-dimensional hydraulic numerical modelling, all performed at river catchment scale. Historical analyses reveal that the site has been hit by several landslides in the far and recent past. This is presently confirmed by the high level of exposure to the impact of rain-triggered debris-flow events, due to the position of the Villa at a closure section of the related river basin and to the hydro- geomorphological characteristics of the basin itself. By applying the proposed approach, a scenario analysis is carried out. Results allow one to highlight the dynamics of the impact of debris flows, thanks to space and time- dependent maps about deposition areas, water depth and speed values, and to identify the most vulnerable archaeological elements within the study site. The numerical simulations are also used to test the efficiency of the existing hydraulic defense systems and to support the implementation of an early warning system for the site protection. Here, we also synthetize the design of the architecture of the wireless monitoring network, the sensor technology adopted to develop an effective real time environmental monitoring system and management plat-form, to construct a Wireless Sensor Network (WSN) - early warning and reporting system, which can be applied as a prevention measure.
    Beschreibung: Published
    Beschreibung: 102509
    Beschreibung: 7A. Geofisica per il monitoraggio ambientale
    Beschreibung: JCR Journal
    Schlagwort(e): Hydraulic risk, Archaeological excavation, Cultural heritage, WSN Monitoring, EWS Scenario analysis ; 03.02. Hydrology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-06-06
    Beschreibung: Carbon captured and stored in sediments and soils from vegetated tidal wetlands (mangroves, saltmarshes, freshwater and brackish marshes), where the rates of organic carbon accumulation (OC) from multiple sources is high, constitutes an active fraction of the global carbon sink (Wang et al., 2021). However, a global inventory of this coastal ‘blue carbon’ remains a challenge, as observations of accumulation rates and stock in vegetated tidal wetlands are labor intensive, expensive, scarce, and unevenly distributed, with few sediment records even for relatively well-studied temperate areas in the Northern Hemisphere (Beaumont et al., 2014). Recent reviews (Duarte et al., 2005, Wilkinson et al., 2018) report a mean carbon accumulation rate of 151 g C m yr for saltmarshes (maximum 1720 g C m yr), 41.4 g C m yr for lagoons (maximum 340 g C m yr), and 62.9 g C m yr for coastal wetlands (maximum 335.8 g C m yr) exceeding the mean burial rate of estuaries and continental shelves (17–45 g C m yr ). The accumulation of ‘blue carbon’ stored in soil and sediments within tidal wetlands, is sensitive to rapidly changing climate factors (e.g. temperature, rainfall, sea level rise, and inundation frequency), and non-climatic anthropogenic drivers (e.g. subsidence from groundwater extraction, reduction of sediment supply due to river damming, and land use change) (Pendleton et al., 2012, Macreadie et al., 2013, Arriola, 2017, Kelleway et al., 2017, Simpson et al., 2017, Ewers Lewis et al., 2018, Ruiz-Fernández et al., 2018, Cuellar-martinez et al., 2019, Macreadie and Saintilan, 2019, Negandhi et al., 2019, Rogers et al., 2019). Fast rates of relative sea level rise (RSLR) and low sediment supply are the main drivers of vertical drowning in tidal wetlands (Mariotti and Carr, 2014, Fagherazzi et al., 2020). A global review suggests that between 60 and 91% of saltmarshes will be drawing under the IPPC predicted rates of sea-level rise (Crosby et al., 2016). Carbon stable isotopic composition ( C) and C/N analysis have been used as tracers to distinguish between OC derived from autochthonous C3 and C4 saltmarsh vascular vegetation (i.e. coastal blue carbon; C 12‰ to −30‰, C/N 5.80 to 41.10; Khan et al., 2015b), and allochthonous sources including fluvial and marine particulate organic matter (POM) derived from freshwater or marine phytoplankton (C 12‰ to −30‰, C/N 5 to 9; Lamb et al., 2006), as well as past sea level indicators in coastal vegetated​ habitats in North West Europe (Wilson, 2017). Data on the spatial and historical changes of OC sources and accumulation coupled with long-term time series of climatic factors are limited for vegetated tidal wetlands in the Mediterranean, which make it hard to assess the response of OC accumulation to relative sea-level rise (RSLR) in this region. Sea level observations from satellite altimetry showed an increase in absolute sea level of 2.6 ± 0.28 mm yr across the Mediterranean Sea during the period 1993–2015, and low-lying coastal areas will be prone to marine flooding according to projections for the 21st century (Moatti and Thiébault, 2016). To better understand the spatial and temporal changes in OC accumulation and sources and assess the influence of SST and RSLR, we measured the stable isotopic composition ( C) and accretion rates in sediment records, applied the MixSIAR model to estimate the OC sources, and analyzed Sea Surface Temperature (SST) and Sea Level (SL) climatic data sets in two different tidal wetland habitats: (i) an impacted habitat affected by strong landscape and anthropogenic alterations, and (ii) an undegraded saltmarsh habitat, within a coastal lagoon (Pialassa Baiona) located in the northwestern Adriatic Sea (Mediterranean Sea).
    Beschreibung: Published
    Beschreibung: 102439
    Beschreibung: 4A. Oceanografia e clima
    Beschreibung: JCR Journal
    Schlagwort(e): Sediments Organic carbon Carbon isotope ratio Mixing models Sea level changes Mediterranean Sea ; 03.02. Hydrology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2021-12-01
    Beschreibung: Here we discussed the results of the first geochemical investigation of the fluids (groundwater and the associated gases) emerging in the southwest of Yazd Province. We carried out two surveys, one in July 2019 and the second in September 2019s, in the region of the Gariz aquifer (central Iran).Wefocused our attention to 1) the chemistry of thewater (major and minor constituents coupled to the stable isotopes of oxygen and hydrogen), 2) the chemical composition of dissolved gases in water together with 3) the isotopic composition of Helium (3He/4He) and 4) the dissolved carbon in water (δ13CTDIC). Hydrogen and oxygen isotope values of groundwater display a fairly narrow range and indicate that the waters are of meteoric origin. On the base of the major ions chemistry, the bulk of the water samples are classified as Ca-HCO3, Ca\\Cl and Na\\Cl types. The groundwater chemistry is mainly influenced by the interaction with CO2-rich fluids, leakage of chlorinated saline water into the alluvial aquifer, and silicate dissolution. High dissolved carbon contents, mainly as bicarbonate ion, reflect the noticeable interaction of the groundwater with CO2-rich fluids. CO2 is the dominant gaseous component in most samples and its amount is always greater with respect to a water in equilibrium with the atmosphere (Air Saturated Water, ASW). Such excess of CO2 contents (more than 730 cc/l STP) dissolved in groundwater also supports the presence of a deep source of CO2-rich gas. The computed δ13C(CO2) in equilibriumwith the groundwater highlight a mixing in different proportion between an inorganic deep sourced CO2 (13C-enriched) and organic CO2 (13C-depleted). We also used the helium isotopes as a tools to figure out the origin of helium in the aquifer (air vs. mantle, and crust). The collected samples show a contribution of mantle-derived He in the Gariz aquifer up to (~45%) and the crust suggesting that at regional scale the tectonic discontinuities had a connectionwith the mantle or magmatic intrusions migrated through the crust transporting mantle volatiles to shallowcrustal layers. However, we cannot infer the timing of this possible magmatism at depth in the complex tectonic evolution of the area.
    Beschreibung: Ministry of Science, Research and Technology of Iran
    Beschreibung: Published
    Beschreibung: 107324
    Beschreibung: 1TR. Georisorse
    Beschreibung: JCR Journal
    Schlagwort(e): Zagros groundwater ; Dissolved gases ; δ13C of TDIC ; Mantle-derived He ; Collision zone ; 03.02. Hydrology ; 03. Hydrosphere
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2021-10-13
    Beschreibung: The needs of society and the emerging blue economy require access and integration of data and information for the construction of dedicated products. A “transparent and accessible ocean” is one of the key objectives of the Ocean Decade 2021–30. In this context, marine infrastructures become significant components of a global knowledge environment, enabling environmental assessment and providing the necessary data for scientifically valid actions to protect and restore ocean health, to use marine resources in a sustainable way. The data is collected, analyzed, organized, and used by people and their good use/reuse can be obtained with social practices, technological and physical agreements aimed at facilitating collaborative knowledge, decision-making, inference. The vision is a digital ocean data ecosystem made up of multiple, interoperable, and scalable components. The huge amount of data and the resulting products can drive the development of new knowledge as well as new applications and services. Predictive capabilities that derive from the digital ecosystem enable the implementation of services for real-time decision-making, multihazard warning systems, and advance marine space planning. The chapter develops following the progressive complexity and information content of products deriving from oceanic data: data cycle and data collections, data products, oceanic reanalysis. The chapter discusses the new challenges of data products and the complexity of deriving them.
    Beschreibung: Published
    Beschreibung: 197-280
    Beschreibung: 4A. Oceanografia e clima
    Schlagwort(e): 03.02. Hydrology ; 05.02. Data dissemination
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: book chapter
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    facet.materialart.
    Unbekannt
    Istituto Nazionale di Oceanografia e di Geofisica Sperimentale
    Publikationsdatum: 2021-12-22
    Beschreibung: SeaDataCloud Temperature and Salinity historical data collections covering the time period 1900-2018 were released in 2020 for each European marginal sea (Arctic Sea, Baltic Sea, Black Sea, North Sea, North Atlantic Ocean, and Mediterranean Sea). A Quality Assurance Strategy (QAS) was developed and continuously refined in order to improve the quality of the SeaDataNet database content and derive the best data products through an iterative approach, which allows the versioning of data products. Regional Temperature and Salinity climatologies (see Figure 1) have been produced using DIVAnd software (Barth et al. 2014) and integrating for the first time SeaDataNet data with external data sources, such as CMEMS in situ TAC (Coriolis Ocean Dataset for Reanalysis) that highly increased the temporal and spatial data coverage. Regional climatologies were designed with a harmonized initial approach and all cover the time period after 1955, when marine data start to be sufficient for mapping. All regional products are characterized by monthly fields over the whole time span 1955-2018 and seasonal decadal fields on the same vertical standard levels of the World Ocean Atlas (WOA18, Garcia et al., 2019). A global SDC climatology has been created for the first time, which contains two different monthly climatology for temperature and salinity, one covering the time period 1900-2017 and the other with a different time coverage 2003-2017, computed from World Ocean Database (WOD2018, Boyer et al., 2019). This choice has been made because spatial coverage of SeaDataNet data at global scale is still too sparse. A consistency analysis of all SDC climatologies versus the WOA has been performed to demonstrate the differences and the value added of SDC products. SDC team worked to optimize the data integration process with external sources, to better tune the DIVAnd parameters, the background field estimation and to improve the final consistency analysis with the available multi-year products from WOA and CMEMS. An overview of the methodology applied to compute the SDC climatologies and their main characteristics will be presented together with the main results achieved by the SDC products team. SDC products, data collections and climatologies, are available through a dedicated web catalogue (https://www.seadatanet.org/Products/) together with their Digital Object Identifier (DOI) and the relative Product Information Document (PIDoc), containing all specifications about product’s generation, quality assessment, technical details and usability to facilitate users’ uptake.
    Beschreibung: Published
    Beschreibung: online
    Beschreibung: 4A. Oceanografia e clima
    Schlagwort(e): Data products ; 03.02. Hydrology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: Abstract
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...