ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ice/ocean interactions  (2)
  • Cambridge University Press  (2)
  • American Chemical Society
  • Annual Reviews
  • 2020-2023  (2)
  • 2005-2009
  • 1995-1999
  • 1980-1984
  • 1
    Publication Date: 2022-10-20
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ackley, S. F., Perovich, D. K., Maksym, T., Weissling, B., & Xie, H. Surface flooding of Antarctic summer sea ice. Annals of Glaciology, 61(82), (2020): 117-126, doi:10.1017/aog.2020.22.
    Description: The surface flooding of Antarctic sea ice in summer covers 50% or more of the sea-ice area in the major summer ice packs, the western Weddell and the Bellingshausen-Amundsen Seas. Two CRREL ice mass-balance buoys were deployed on the Amundsen Sea pack in late December 2010 from the icebreaker Oden, bridging the summer period (January–February 2011). Temperature records from thermistors embedded vertically in the snow and ice showed progressive increases in the depth of the flooded layer (up to 0.3–0.35 m) on the ice cover during January and February. While the snow depth was relatively unchanged from accumulation (〈10 cm), ice thickness decreased by up to a meter from bottom melting during this period. Contemporaneous with the high bottom melting, under-ice water temperatures up to 1°C above the freezing point were found. The high temperature arises from solar heating of the upper mixed layer which can occur when ice concentration in the local area falls and lower albedo ocean water is exposed to radiative heating. The higher proportion of snow ice found in the Amundsen Sea pack ice therefore results from both winter snowfall and summer ice bottom melt found here that can lead to extensive surface flooding.
    Description: This work was supported by the National Science Foundation grant to UTSA, ANT-0839053-Sea Ice System in Antarctic Summer (S.F. Ackley, H. Xie and B. Weissling), and to WHOI, ANT-1341513 (T. Maksym), and by the NASA Center for Advanced Measurements in Extreme Environments or NASA-CAMEE at UTSA, NASA #80NSSC19M0194 (S.F. Ackley, H. Xie, B.Weissling).
    Keywords: Ice/ocean interactions ; Sea ice ; Sea-ice growth and decay ; Snow/ice surface processes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-21
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ackley, S. F., Stammerjohn, S., Maksym, T., Smith, M., Cassano, J., Guest, P., Tison, J., Delille, B., Loose, B., Sedwick, P., DePace, L., Roach, L., & Parno, J. Sea-ice production and air/ice/ocean/biogeochemistry interactions in the Ross Sea during the PIPERS 2017 autumn field campaign. Annals of Glaciology, 61(82), (2020): 181-195, doi:10.1017/aog.2020.31.
    Description: The Ross Sea is known for showing the greatest sea-ice increase, as observed globally, particularly from 1979 to 2015. However, corresponding changes in sea-ice thickness and production in the Ross Sea are not known, nor how these changes have impacted water masses, carbon fluxes, biogeochemical processes and availability of micronutrients. The PIPERS project sought to address these questions during an autumn ship campaign in 2017 and two spring airborne campaigns in 2016 and 2017. PIPERS used a multidisciplinary approach of manned and autonomous platforms to study the coupled air/ice/ocean/biogeochemical interactions during autumn and related those to spring conditions. Unexpectedly, the Ross Sea experienced record low sea ice in spring 2016 and autumn 2017. The delayed ice advance in 2017 contributed to (1) increased ice production and export in coastal polynyas, (2) thinner snow and ice cover in the central pack, (3) lower sea-ice Chl-a burdens and differences in sympagic communities, (4) sustained ocean heat flux delaying ice thickening and (5) a melting, anomalously southward ice edge persisting into winter. Despite these impacts, airborne observations in spring 2017 suggest that winter ice production over the continental shelf was likely not anomalous.
    Description: NSF supported PIPERS award numbers: ANT-1341717 (S.F. Ackley, UTSA); ANT-1341513 (E. Maksym, WHOI); ANT-1341606 (S. Stammerjohn and J. Cassano, U Colorado); ANT-1341725 (P. Guest, NPS). P. Sedwick was supported by NSF ANT-1543483. S.F. Ackley was also supported by NASA Grant 80NSSC19M0194 to the Center for Advanced Measurements in Extreme Environments at UTSA. S. Stammerjohn was also supported by the LTER Program under NFS award number ANT-0823101 (H. Ducklow, LDEO/Columbia University). Additional support was by the Belgian F.R.S-FNRS (project ISOGGAP and IODIne, contract T.0268.16 and J.0262.17, respectively). Bruno Delille is a research associate of the F.R.S.-FNRS. Terra-Sar-X quicklook imagery was coordinated by Kathrin Hoeppner at DLR, and Andy Archer (with the Antarctic Support Contractor) provided selected (cloud-free) MODIS scenes and daily maps of AMSR2 sea-ice concentration.
    Keywords: Atmosphere/ice/ocean interactions ; Ice/ocean interactions ; Sea ice ; Sea-ice growth and decay
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...