ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (18,475)
  • Elsevier  (18,475)
  • American Chemical Society
  • American Institute of Physics (AIP)
  • 2020-2024  (491)
  • 2020-2023
  • 2015-2019  (17,984)
  • Computer Science  (18,475)
Collection
  • Articles  (18,475)
Years
Year
Journal
  • 1
    Publication Date: 2018-04-01
    Print ISSN: 0031-3203
    Electronic ISSN: 1873-5142
    Topics: Computer Science
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-01-01
    Print ISSN: 0031-3203
    Electronic ISSN: 1873-5142
    Topics: Computer Science
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-08-05
    Description: Publication date: Available online 3 August 2015 Source: SoftwareX Author(s): Gianmarco Alberti Correspondence Analysis (CA) is a statistical exploratory technique frequently used in many research fields to graphically visualize the structure of contingency tables. Many programs, both commercial and free, perform CA but none of them as yet provides a visual aid to the interpretation of the results. The ‘CAinterprTools’ package, designed to be used in the free R statistical environment, aims at filling that gap. A novel-to-medium R user has been considered as target. 15 commands enable to easily obtain charts that help (and are relevant to) the interpretation of the CA’s results, freeing the user from the need to inspect and scrutinize tabular CA outputs, and to look up values and statistics on which further calculations are necessary. The package also implements tests to assess the significance of the input table’s total inertia and individual dimensions.
    Electronic ISSN: 2352-7110
    Topics: Computer Science
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Elsevier
    In: SoftwareX
    Publication Date: 2016-06-26
    Description: Publication date: Available online 24 June 2016 Source: SoftwareX Author(s): Jeffrey Bolan, Elise Hall, Chris Clifford, Brian Thurow The Light-Field Imaging Toolkit (LFIT) is a collection of MATLAB functions designed to facilitate the rapid processing of raw light field images captured by a plenoptic camera. An included graphical user interface streamlines the necessary post-processing steps associated with plenoptic images. The generation of perspective shifted views and computationally refocused images is supported, in both single image and animated formats. LFIT performs necessary calibration, interpolation, and structuring steps to enable future applications of this technology.
    Electronic ISSN: 2352-7110
    Topics: Computer Science
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-05-11
    Description: Publication date: Available online 10 May 2016 Source: SoftwareX Author(s): Ali H. Taqi Random Phase Approximation (RPA) is one of the main approximation tools in studying nuclear structure. Here, we present a graphical user interface (GUI) Fortran code: Particle–Particle Random Phase Approximation (PPRPA) version 1, 2015. The code performs Tamm–Dancoff approximation (TDA) and Random Phase Approximation (RPA) calculations of nuclear structure of nuclei having A ± 2 nucleons in the total angular momenta and isospin (JT) scheme. The Hamiltonian is diagonalized with a given input model space, single-particle energies and interaction. Space function has been expanded to include orbits s, p, d, f, g and h. The current version of the code allows the user to test 20 orbits only. All possible eigenvalues and amplitudes within a model space are calculated. The single-particle density, charge distribution density and transition density are calculated in the basis of the harmonic oscillator potential. The primary utility of the PPRPA code is providing a visual tool to implementation and understanding of the collective excitation techniques TDA and RPA. Impact of the program includes all students, researchers and all those interested in knowing the facts about the structure of the atom nucleus and about the success of approximation methods in different branches of science.
    Electronic ISSN: 2352-7110
    Topics: Computer Science
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-07-16
    Description: Publication date: Available online 14 July 2016 Source: SoftwareX Author(s): Tobias Weber, Robert Georgii, Peter Böni Due to their non-trivial resolution function, measurements on triple-axis spectrometers require extra care from the experimentalist in order to obtain optimal results and to avoid unwanted spurious artefacts. We present a free and open-source software system that aims to ease many of the tasks encountered during the planning phase, in the execution and in data treatment of experiments performed on neutron triple-axis spectrometers. The software is currently in use and has been successfully tested at the MLZ, but can be configured to work with other triple-axis instruments and instrument control systems.
    Electronic ISSN: 2352-7110
    Topics: Computer Science
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 8 July 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Journal of Computational Physics〈/p〉 〈p〉Author(s): Maxim Rakhuba, Alexander Novikov, Ivan Oseledets〈/p〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Such problems as computation of spectra of spin chains and vibrational spectra of molecules can be written as 〈em〉high-dimensional eigenvalue problems〈/em〉, i.e., when the eigenvector can be naturally represented as a multidimensional tensor. Tensor methods have proven to be an efficient tool for the approximation of solutions of high-dimensional eigenvalue problems, however, their performance deteriorates quickly when the number of eigenstates to be computed increases. We address this issue by designing a new algorithm motivated by the ideas of 〈em〉Riemannian optimization〈/em〉 (optimization on smooth manifolds) for the approximation of multiple eigenstates in the 〈em〉tensor-train format〈/em〉, which is also known as matrix product state representation. The proposed algorithm is implemented in TensorFlow, which allows for both CPU and GPU parallelization.〈/p〉〈/div〉
    Print ISSN: 0021-9991
    Electronic ISSN: 1090-2716
    Topics: Computer Science , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 8 July 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Journal of Computational Physics〈/p〉 〈p〉Author(s): Chen Liu, Florian Frank, Faruk O. Alpak, Béatrice Rivière〈/p〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉Permeability estimation of porous media from directly solving the Navier–Stokes equations has a wide spectrum of applications in petroleum industry. In this paper, we utilize a pressure-correction projection algorithm in conjunction with the interior penalty discontinuous Galerkin scheme for space discretization to build an incompressible Navier–Stokes simulator and to use this simulator to calculate permeability of real rock samples. The proposed method is accurate, numerically robust, and exhibits the potential for tackling realistic problems.〈/p〉〈/div〉
    Print ISSN: 0021-9991
    Electronic ISSN: 1090-2716
    Topics: Computer Science , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 8 July 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Journal of Computational Physics〈/p〉 〈p〉Author(s): Mustapha Malek, Nouh Izem, M. Shadi Mohamed, Mohammed Seaid, Omar Laghrouche〈/p〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉An efficient partition of unity finite element method for three-dimensional transient diffusion problems is presented. A class of multiple exponential functions independent of time variable is proposed to enrich the finite element approximations. As a consequence of this procedure, the associated matrix for the linear system is evaluated once at the first time step and the solution is obtained at subsequent time step by only updating the right-hand side of the linear system. This results in an efficient numerical solver for transient diffusion equations in three space dimensions. Compared to the conventional finite element methods with 〈em〉h〈/em〉-refinement, the proposed approach is simple, more efficient and more accurate. The performance of the proposed method is assessed using several test examples for transient diffusion in three space dimensions. We present numerical results for a transient diffusion equation with known analytical solution to quantify errors for the new method. We also solve time-dependent diffusion problems in complex geometries. We compare the results obtained using the partition of unity finite element method to those obtained using the standard finite element method. It is shown that the proposed method strongly reduces the necessary number of degrees of freedom to achieve a prescribed accuracy.〈/p〉〈/div〉
    Print ISSN: 0021-9991
    Electronic ISSN: 1090-2716
    Topics: Computer Science , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019
    Description: 〈p〉Publication date: Available online 8 July 2019〈/p〉 〈p〉〈b〉Source:〈/b〉 Journal of Computational Physics〈/p〉 〈p〉Author(s): Lahbib Bourhrara〈/p〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉This document presents a new numerical scheme dealing with the Boltzmann transport equation. This scheme is based on the expansion of the angular flux in a truncated spherical harmonics function and the discontinuous finite element method for the spatial variable. The advantage of this scheme lies in the fact that we can deal with unstructured, non-conformal and curved meshes. Indeed, it is possible to deal with distorted regions whose boundary is constituted by edges that can be either line segments or circular arcs or circles. In this document, we detail the derivation of the method for 2D geometries. However, the generalization to 2D extruded geometries is trivial.〈/p〉〈/div〉
    Print ISSN: 0021-9991
    Electronic ISSN: 1090-2716
    Topics: Computer Science , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...