ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 333.7  (1)
  • 551.49  (1)
  • covariates  (1)
  • Blackwell Publishing Ltd  (3)
  • American Physical Society (APS)
  • 2020-2022  (3)
Sammlung
Verlag/Herausgeber
Erscheinungszeitraum
  • 2020-2022  (3)
Jahr
  • 1
    Publikationsdatum: 2021-07-04
    Beschreibung: Most common machine learning (ML) algorithms usually work well on balanced training sets, that is, datasets in which all classes are approximately represented equally. Otherwise, the accuracy estimates may be unreliable and classes with only a few values are often misclassified or neglected. This is known as a class imbalance problem in machine learning and datasets that do not meet this criterion are referred to as imbalanced data. Most datasets of soil classes are, therefore, imbalanced data. One of our main objectives is to compare eight resampling strategies that have been developed to counteract the imbalanced data problem. We compared the performance of five of the most common ML algorithms with the resampling approaches. The highest increase in prediction accuracy was achieved with SMOTE (the synthetic minority oversampling technique). In comparison to the baseline prediction on the original dataset, we achieved an increase of about 10, 20 and 10% in the overall accuracy, kappa index and F‐score, respectively. Regarding the ML approaches, random forest (RF) showed the best performance with an overall accuracy, kappa index and F‐score of 66, 60 and 57%, respectively. Moreover, the combination of RF and SMOTE improved the accuracy of the individual soil classes, compared to RF trained on the original dataset and allowed better prediction of soil classes with a low number of samples in the corresponding soil profile database, in our case for Chernozems. Our results show that balancing existing soil legacy data using synthetic sampling strategies can significantly improve the prediction accuracy in digital soil mapping (DSM). Highlights Spatial distribution of soil classes in Iran can be predicted using machine learning (ML) algorithms. The synthetic minority oversampling technique overcomes the drawback of imbalanced and highly biased soil legacy data. When combining a random forest model with synthetic sampling strategies the prediction accuracy of the soil model improves significantly. The resulting new soil map of Iran has a much higher spatial resolution compared to existing maps and displays new soil classes that have not yet been mapped in Iran.
    Beschreibung: Alexander von Humboldt‐Stiftung http://dx.doi.org/10.13039/100005156
    Beschreibung: German Research Foundation http://dx.doi.org/10.13039/501100001659
    Beschreibung: Soil and Water Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
    Schlagwort(e): 631.4 ; covariates ; imbalanced data ; machine learning ; random forest ; soil legacy data
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2021-06-27
    Beschreibung: Social inequalities lead to flood resilience inequalities across social groups, a topic that requires improved documentation and understanding. The objective of this paper is to attend to these differences by investigating self‐stated flood recovery across genders in Vietnam as a conceptual replication of earlier results from Germany. This study employs a regression‐based analysis of 1,010 respondents divided between a rural coastal and an urban community in Thua Thien‐Hue province. The results highlight an important set of recovery process‐related variables. The set of relevant variables is similar across genders in terms of inclusion and influence, and includes age, social capital, internal and external support after a flood, perceived severity of previous flood impacts, and the perception of stress‐resilience. However, women were affected more heavily by flooding in terms of longer recovery times, which should be accounted for in risk management. Overall, the studied variables perform similarly in Vietnam and Germany. This study, therefore, conceptually replicates previous results suggesting that women display slightly slower recovery levels as well as that psychological variables influence recovery rates more than adverse flood impacts. This provides an indication of the results' potentially robust nature due to the different socio‐environmental contexts in Germany and Vietnam.
    Schlagwort(e): 333.7 ; flood recovery ; resilience ; societal equity ; vulnerability
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    Blackwell Publishing Ltd | Malden, US
    Publikationsdatum: 2021-07-04
    Beschreibung: High‐performance numerical codes are an indispensable tool for hydrogeologists when modeling subsurface flow and transport systems. But as they are written in compiled languages, like C/C++ or Fortran, established software packages are rarely user‐friendly, limiting a wider adoption of such tools. OpenGeoSys (OGS), an open‐source, finite‐element solver for thermo‐hydro‐mechanical–chemical processes in porous and fractured media, is no exception. Graphical user interfaces may increase usability, but do so at a dramatic reduction of flexibility and are difficult or impossible to integrate into a larger workflow. Python offers an optimal trade‐off between these goals by providing a highly flexible, yet comparatively user‐friendly environment for software applications. Hence, we introduce ogs5py, a Python‐API for the OpenGeoSys 5 scientific modeling package. It provides a fully Python‐based representation of an OGS project, a large array of convenience functions for users to interact with OGS and connects OGS to the scientific and computational environment of Python.
    Beschreibung: German Federal Environmental Foundation http://dx.doi.org/10.13039/100007636
    Beschreibung: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Schlagwort(e): 551.49 ; hydrogeology ; subsurface flow ; modeling ; software
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...