ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-08-31
    Description: We make a thorough review of geological and seismological data on the long-lived Schio-Vicenza Fault System (SVFS) in northern Italy and present for it a geodynamic and seismotectonic interpretation. The SVFS is a major and high-angle structure transverse to the mean trend of the eastern Southern Alps fold-and-thrust belt, and the knowledge of this structure is deeply rooted in the geological literature and spans more than a century and a half. The main fault of the SVFS is the Schio-Vicenza Fault (SVF), which has a significant imprint in the landscape across the eastern Southern Alps and the Veneto-Friuli foreland. The SVF can be divided into a northern segment, extending into the chain north of Schio and mapped up to the Adige Valley, and a southern one, coinciding with the SVF proper. The latter segment borders to the east the Lessini Mountains, Berici Mountains and Euganei Hills block, separating this foreland structural high from the Veneto-Friuli foreland, and continues southeastward beneath the recent sediments of the plain via the blind Conselve–Pomposa fault. The structures forming the SVFS have been active with different tectonic phases and different styles of faulting at least since the Mesozoic, with a long-term dip-slip component of faulting well defined and, on the contrary, the horizontal component of the movement not being well constrained. The SVFS interrupts the continuity of the eastern Southern Alps thrust fronts in the Veneto sector, suggesting that it played a passive role in controlling the geometry of the active thrust belt and possibly the current distribution of seismic release. As a whole, apart from moderate seismicity along the northern segment and few geological observations along the southern one, there is little evidence to constrain the recent activity of the SVFS. In this context, the SVFS, and specifically its SVF strand, has accommodated a different amount of shortening of adjacent domains of the Adriatic (Dolomites) indenter by internal deformation produced by lateral variation in strength, related to Permian–Mesozoic tectonic structures and paleogeographic domains. The review of the historical and instrumental seismicity along the SVFS shows that it does not appear to have generated large earthquakes during the last few hundred years. The moderate seismicity points to a dextral strike-slip activity, which is also corroborated by the field analysis of antithetic Riedel structures of the fault cropping out along the northern segment. Conversely, the southern segment shows geological evidence of sinistral strike-slip activity. The apparently conflicting geological and seismological data can be reconciled considering the faulting style of the southern segment as driven by the indentation of the Adriatic plate, while the opposite style along the northern segment can be explained in a sinistral opening “zipper” model, where intersecting pairs of simultaneously active faults with a different sense of shear merge into a single fault system.
    Description: Published
    Description: 1967-1986
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: Inherited faults ; Fold and thrust belt ; Transverse structures ; Strike-slip faults ; Southern Alps ; 04.07. Tectonophysics ; 04.04. Geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-05-12
    Description: The occurrence of high volumes of methane during tunneling operations is a critical safety factor that can influence the choice of different technical approaches for tunnel design and construction. Moreover, gas accumulation can be influenced by fluid migration along spatially focused preferential pathways (i.e. points along faults and fracture zones) that can result in highly variable gas concentrations along the tunnel trace. This paper proposes a methodological approach to minimize the risks, and costs, related to tunnel construction in rocks with potentially high methane concentrations. This approach combines soil gas geochemistry and structural geology surveys along and across the main faults and fracture systems that occur in the study area. The procedure is based on near-surface sampling and consists of a two-pronged approach: the measurement of fault zone gas emissions and their classification as barrier or conduit zones. Moreover, it is illustrated the importance of measuring a wide spectrum of different gas species, not just methane, for a more accurate interpretation of the geological, geochemical, and structural systems. This is due to the potential for multiple gas origins, different gas associations, and various alteration and oxidation processes (e.g., CH4 oxidation into CO2) that can modify the geochemical signal along the flow path as gas migrates towards the surface.
    Description: Published
    Description: 1035-1038
    Description: 9T. Geochimica dei fluidi applicata allo studio e al monitoraggio di aree sismiche
    Keywords: soil gas ; tunnel ; 04.04. Geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-05-12
    Description: The focus of this study is Anthemountas basin in northern Greece, where land subsidence phenomena had been previously identified. The basin has a NNW-SSE orientation, which is optimal to the currently acting ~ N-S extension field in the back-arc Aegean area and is bordered to its north and south edge by two, well-pronounced faults. The region of study is located close to the greater metropolitan city of Thessaloniki and comprises a number of critical facilities including the city’s international airport. The research object is the monitoring of the evolution of the displacement at Anthemountas graben, using InSAR time-series and the investigation of the dominant driving mechanism. We show new surface displacement results from the ENVISAR satellite, and overall, an enhanced dataset of SAR time-series is presented, spanning the period 1992 to 2010, by using the satellites ERS1, ERS2 and ENVISAT. Results indicate a continuously deforming environment in both decades, with an increasing magnitude. The detailed study of the deformation pattern together with the analysis of in situ data defines aquifer overpumping as the main cause of the detected displacement of both decades. Critical regions are examined in detail, as for example: an area close to Thermi, the town of Perea and the Thessaloniki’s international airport, a major hub of the Balkans. The latter was subjected to an increasing deforming velocity during the monitoring period. Overall, we conclude that a water management plan should be of high priority for the area.
    Description: Published
    Description: 518
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: Aquifer activity ; InSAR time-series ; 04.03. Geodesy ; 04.04. Geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...