ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (8)
  • 551  (4)
  • 551.46  (4)
  • John Wiley & Sons, Inc.  (8)
  • American Chemical Society
  • Blackwell Publishing Ltd
  • Wiley-Blackwell
  • 2020-2022  (8)
  • 1
    Publication Date: 2021-06-22
    Description: The contribution of sediments to nutrient cycling of the coastal North Sea is strongly controlled by the intensity of fluxes across the sediment water interface. Pore‐water advection is one major exchange mechanism that is well described by models, as it is determined by physical parameters. In contrast, biotransport (i.e., bioirrigation, bioturbation) as the other major transport mechanism is much more complex. Observational data reflecting biotransport, from the German Bight for example, is scarce. We sampled the major sediment provinces of the German Bight repeatedly over the years from 2013 to 2019. By employing ex situ whole core incubations, we established the seasonal and spatial variability of macrofauna‐sustained benthic fluxes of oxygen and nutrients. A multivariate, partial least squares analysis identified faunal activity, in specifically bioturbation and bioirrigation, alongside temperature, as the most important drivers of oxygen and nutrient fluxes. Their combined effect explained 63% of the observed variability in oxygen fluxes, and 36–48% of variability in nutrient fluxes. Additional 10% of the observed variability of fluxes were explained by sediment type and the availability of plankton biomass. Based on our extrapolation by sediment provinces, we conclude that pore‐water advection and macrofaunal activity contributed equally to the total benthic oxygen uptake in the German Bight.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Keywords: 551 ; southern North Sea ; coastal sediments ; macrofauna ; bioturbation ; bioirrigation ; organic matter turnover
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-27
    Description: In coastal marine environments, physical and biological forces can cause dynamic pH fluctuations from microscale (diffusive boundary layer [DBL]) up to ecosystem‐scale (benthic boundary layer [BBL]). In the face of ocean acidification (OA), such natural pH variations may modulate an organism's response to OA by providing temporal refugia. We investigated the effect of pH fluctuations, generated by the brown alga Fucus serratus' biological activity, on the calcifying epibionts Balanus improvisus and Electra pilosa under OA. For this, both epibionts were grown on inactive and biologically active surfaces and exposed to (1) constant pH scenarios under ambient (pH 8.1) or OA conditions (pH 7.7), or (2) oscillating pH scenarios mimicking BBL conditions at ambient (pH 7.7–8.6) or OA scenarios (pH 7.4–8.2). Furthermore, all treatment combinations were tested at 10°C and 15°C. Against our expectations, OA treatments did not affect epibiont growth under constant or fluctuating (BBL) pH conditions, indicating rather high robustness against predicted OA scenarios. Furthermore, epibiont growth was hampered and not fostered on active surfaces (fluctuating DBL conditions), indicating that fluctuating pH conditions of the DBL with elevated daytime pH do not necessarily provide temporal refugia from OA. In contrast, results indicate that factors other than pH may play larger roles for epibiont growth on macrophytes (e.g., surface characteristics, macrophyte antifouling defense, or dynamics of oxygen and nutrient concentrations). Warming enhanced epibiont growth rates significantly, independently of OA, indicating no synergistic effects of pH treatments and temperature within their natural temperature range.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: 551.46 ; coastal marine environments ; calcifying marine epibionts
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-07-05
    Description: Large urban areas are typically characterized by a mosaic of different land uses, with contrasting mixes of impermeable and permeable surfaces that alter “green” and “blue” water flux partitioning. Understanding water partitioning in such heterogeneous environments is challenging but crucial for maintaining a sustainable water management during future challenges of increasing urbanization and climate warming. Stable isotopes in water have outstanding potential to trace the partitioning of rainfall along different flow paths and identify surface water sources. While isotope studies are an established method in many experimental catchments, surprisingly few studies have been conducted in urban environments. Here, we performed synoptic sampling of isotopes in precipitation, surface water and groundwater across the complex city landscape of Berlin, Germany, for a large ‐scale overview of the spatio‐temporal dynamics of urban water cycling. By integrating stable isotopes of water with other hydrogeochemical tracers we were able to identify contributions of groundwater, surface runoff during storm events and effluent discharge on streams with variable degrees of urbanization. We could also assess the influence of summer evaporation on the larger Spree and Havel rivers and local wetlands during the exceptionally warm and dry summers of 2018 and 2019. Our results demonstrate that using stable isotopes and hydrogeochemical data in urban areas has great potential to improve our understanding of water partitioning in complex, anthropogenically‐affected landscapes. This can help to address research priorities needed to tackle future challenges in cities, including the deterioration of water quality and increasing water scarcity driven by climate warming, by improving the understanding of time‐variant rainfall‐runoff behaviour of urban streams, incorporating field data into ecohydrological models, and better quantifying urban evapotranspiration and groundwater recharge.
    Description: Seasonal isotope and hydrogeochemical dynamics of surface‐ and groundwater in a large urban area following the dry summer of 2018, which was characterized by a temperature anomaly and precipitation deficit.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: 551 ; ecohydrology ; hydrogeochemistry ; isotopes ; tracers ; urban green spaces ; urban hydrology
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-06-27
    Description: Understanding groundwater–surface water (GW–SW) interactions is vital for water management in karstic catchments due to its impact on water quality. The objective of this study was to evaluate and compare the applicability of seven environmental tracers to quantify and localize groundwater exfiltration into a small, human‐impacted karstic river system. Tracers were selected based on their emission source to the surface water either as (a) dissolved, predominantly geogenic compounds (radon‐222, sulphate and electrical conductivity) or (b) anthropogenic compounds (predominantly) originating from wastewater treatment plant (WWTP) effluents (carbamazepine, tramadol, sodium, chloride). Two contrasting sampling approaches were compared (a) assuming steady‐state flow conditions and (b) considering the travel time of the water parcels (Lagrangian sampling) through the catchment to account for diurnal changes in inflow from the WWTP. Spatial variability of the concentrations of all tracers indicated sections of preferential groundwater inflow. Lagrangian sampling techniques seem highly relevant for capturing dynamic concentration patterns of WWTP‐derived compounds. Quantification of GW inflow with the finite element model FINIFLUX, based on observed in‐stream Rn activities led to plausible fluxes along the investigated river reaches (0.265 m3 s−1), while observations of other natural or anthropogenic environmental tracers produced less plausible water fluxes. Important point sources of groundwater exfiltration can be ascribed to locations where the river crosses geological fault lines. This indicates that commonly applied concepts describing groundwater–surface water interactions assuming diffuse flow in porous media are difficult to transfer to karstic river systems whereas concepts from fractured aquifers may be more applicable. In general, this study helps selecting the best suited hydrological tracer for GW exfiltration and leads to a better understanding of processes controlling groundwater inflow into karstic river systems.
    Description: Karst aquifers represent an increased complexity when aiming to measure the interaction between groundwater and river water. Combining field‐based measurements on catchment scale and modelling, the applicability of ‘classical’ environmental groundwater tracers was compared to selected organic (micro)pollutants often considered as conservative and originally arising from a wastewater treatment plant. This study demonstrates that the choice of an appropriate tracer is crucial when either aiming to quantify groundwater exfiltration into karstic river systems, or indicating hydrological processes, applying (globally) omnipresent pollutants.
    Description: German Research Foundation (DFG) http://dx.doi.org/10.13039/501100001659
    Keywords: 551.46 ; carbamazepine ; groundwater inflow ; Lagrangian sampling ; radon ; wastewater treatment plant ; water quality
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-06-27
    Description: The general task of image classification seems to be solved due to the development of modern convolutional neural networks (CNNs). However, the high intraclass variability and interclass similarity of plankton images still prevents the practical identification of morphologically similar organisms. This prevails especially for rare organisms. Every CNN requires a vast amount of manually validated training images which renders it inefficient to train study‐specific classifiers. In most follow‐up studies, the plankton community is different from before and this data set shift (DSS) reduces the correct classification rates. A common solution is to discard all uncertain images and hope that the remains still resemble the true field situation. The intention of this North Sea Video Plankton Recorder (VPR) study is to assess if a combination of a Capsule Neural Network (CapsNet) with probability filters can improve the classification success in applications with DSS. Second, to provide a guideline how to customize automated CNN and CapsNet deep learning image analysis methods according to specific research objectives. In community analyses, our approach achieved a discard of uncertain predictions of only 5%. CapsNet and CNN reach similar precision scores, but the CapsNet has lower recall scores despite similar discard ratios. This is due to a higher discard ratio in rare classes. The recall advantage of the CNN decreases with increasing DSS. We present an alternative method to handle rare classes with a CNN achieving a mean recall of 96% by manually validating an average of 6.5% of the original images.
    Keywords: 551.46 ; North Sea ; plankton classification ; automated analyses
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-07-05
    Description: The partial pressure of carbon dioxide (pCO2) in surface seawater is an important biogeochemical variable because, together with the pCO2 in the atmosphere, it determines the direction of air–sea carbon dioxide exchange. Large‐scale observations of pCO2 are facilitated by Ships‐of‐Opportunity (SOOP‐CO2) equipped with underway measuring instruments. The need for expanding the observation capacity and the challenges involving the sustainability and maintenance of traditional equilibrator systems led the community toward developing simpler and more autonomous systems. Here we performed a comparison between a membrane‐based sensor and a showerhead equilibration sensor installed on two SOOP‐CO2 between 2013 and 2018. We identified time‐ and space‐adequate crossovers in the Skagerrak Strait, where the two ship routes often crossed. We found a mean total difference of 1.5 ± 10.6 μatm and a root mean square error of 11 μatm. The pCO2 values recorded by the two instruments showed a strong linear correlation with a coefficient of 0.91 and a slope of 1.07 (± 0.14), despite the dynamic nature of the environment and the difficulty of comparing measurements from two different vessels. The membrane‐based sensor was integrated with a FerryBox system on a ship with a high sampling frequency in the study area. We showed the strength of having a sensor‐based network with a high spatial coverage that can be validated against conventional SOOP‐CO2 methods. Proving the validity of membrane‐based sensors in coastal and continental shelf seas and using the higher frequency measurements they provide can enable a thorough characterization of pCO2 variability in these dynamic environments.
    Keywords: 551.46 ; surface seawater ; carbon dioxide ; partial pressure ; measurements
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-06-16
    Description: Information on water balance components such as evapotranspiration and groundwater recharge are crucial for water management. Due to differences in physical conditions, but also due to limited budgets, there is not one universal best practice, but a wide range of different methods with specific advantages and disadvantages. In this study, we propose an approach to quantify actual evapotranspiration, groundwater recharge and water inflow, i.e. precipitation and irrigation, that considers the specific conditions of irrigated agriculture in warm, arid environments. This approach does not require direct measurements of precipitation or irrigation quantities and is therefore suitable for sites with an uncertain data basis. For this purpose, we combine soil moisture and energy balance monitoring, remote sensing data analysis and numerical modelling using Hydrus. Energy balance data and routine weather data serve to estimate ET0. Surface reflectance data from satellite images (Sentinel‐2) are used to derive leaf area indices, which help to partition ET0 into energy limited evaporation and transpiration. Subsequently, first approximations of water inflow are derived based on observed soil moisture changes. These inflow estimates are used in a series of forward simulations that produce initial estimates of drainage and ETact, which in turn help improve the estimate of water inflow. Finally, the improved inflow estimates are incorporated into the model and then a parameter optimization is performed using the observed soil moisture as the reference figure. Forward simulations with calibrated soil parameters result in final estimates for ETact and groundwater recharge. The presented method is applied to an agricultural test site with a crop rotation of cotton and wheat in Punjab, Pakistan. The final model results, with an RMSE of 2.2% in volumetric water content, suggest a cumulative ETact and groundwater recharge of 769 and 297 mm over a period of 281 days, respectively. The total estimated water inflow accounts for 946 mm, of which 77% originates from irrigation.
    Description: Approach to quantify ETact, GWR and water inflow that considers the specific conditions of irrigated agriculture in warm, acid environments. It combines soil moisture and energy balance monitoring, remote sensing data analysing data analysis and numerical modelling using Hydrus. The final model results suggest that GWR accounts for one third of the total water inflow, of which 77% originates from irrigations. image
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Keywords: 551 ; actual evapotranspiration ; ground heat flux ; groundwater recharge ; Hydrus ; irrigation ; net radiation ; Sentinel‐2 ; soil moisture
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-09-29
    Description: Dinitrogen (N2) fixation is a major source of bioavailable nitrogen to oligotrophic ocean communities. Yet, we have limited understanding how ongoing climate change could alter N2 fixation. Most of our understanding is based on short‐term laboratory experiments conducted on individual N2‐fixing species whereas community‐level approaches are rare. In this longer‐term in situ mesocosm study, we aimed to improve our understanding on the role of rising atmospheric carbon dioxide (CO2) and simulated deep water upwelling on N2 and carbon (C) fixation rates in a natural oligotrophic plankton community. We deployed nine mesocosms in the subtropical North Atlantic Ocean and enriched seven of these with CO2 to yield a range of treatments (partial pressure of CO2, pCO2 = 352–1025 μatm). We measured rates of N2 and C fixation in both light and dark incubations over the 55‐day study period. High pCO2 negatively impacted light and dark N2 fixation rates in the oligotrophic phase before simulated upwelling, while the effect reversed in the light N2 fixation rates in the bloom decay phase after added nutrients were consumed. Dust deposition and simulated upwelling of nutrient‐rich deep water increased N2 fixation rates and nifH gene abundances of selected clades including the unicellular diazotrophic cyanobacterium clade UCYN‐B. Elevated pCO2 increased C fixation rates in the decay phase. We conclude that elevated pCO2 and pulses of upwelling have pronounced effects on diazotrophy and primary producers, and upwelling and dust deposition modify the pCO2 effect in natural assemblages.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Exzellenzcluster Ozean der Zukunft http://dx.doi.org/10.13039/501100010783
    Description: H2020 Environment http://dx.doi.org/10.13039/100010681
    Description: Villum Foundation http://dx.doi.org/10.13039/100008398
    Description: Horizon 2020 http://dx.doi.org/10.13039/100010661
    Description: Research Foundation http://dx.doi.org/10.13039/100005930
    Description: Federal Ministry of Education and Research http://dx.doi.org/10.13039/501100002347
    Keywords: 551 ; subtropical North Atlantic Ocean ; N2 fixation ; C fixation
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...