ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Nuclear reactions
  • Photosynthesis
  • Ambleside, UK  (2)
  • American Chemical Society
  • American Chemical Society (ACS)
  • Elsevier
  • 2020-2022  (2)
Sammlung
Verlag/Herausgeber
Erscheinungszeitraum
  • 2020-2022  (2)
Jahr
  • 1
    facet.materialart.
    Unbekannt
    Freshwater Biological Association | Ambleside, UK
    In:  http://aquaticcommons.org/id/eprint/5301 | 1256 | 2011-09-29 15:07:11 | 5301 | Freshwater Biological Association
    Publikationsdatum: 2021-07-09
    Beschreibung: The cyanobacteria that cause problems in water supply are principally the colonial forms that are buoyed up by gas vesicles. The success of these organisms is due, in part, to their gas vesicles, which enable them to perform vertical migrations or to maintain themselves in the euphotic zone. The gas vesicles are also the root cause of the problems. In calm periods they cause the cyanobacteria to float to the water surface forming noxious scums, and they may prevent the colonies from sedimenting in water treatment plants. Gas vesicles are hollow, gas-filled structures; they are rigid but can be collapsed by the application of pressure. Their critical collapse pressure is influenced by their dimensions, which vary in different organisms. Gas vesicles are formed by the assembly of two types of protein, which determine their mechanical and physical properties. Methods for collapsing gas vesicles in natural populations of cyanobacteria will be considered. They may have application to the control of cyanobacteria in water supply.
    Schlagwort(e): Ecology ; Limnology ; Pollution ; Eutrophication ; Algal blooms ; Gases ; Buoyancy ; Algae ; Bacteria ; Photosynthesis ; Growth ; Competition
    Repository-Name: AquaDocs
    Materialart: book_section , FALSE
    Format: application/pdf
    Format: application/pdf
    Format: 150-162
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    Freshwater Biological Association | Ambleside, UK
    In:  http://aquaticcommons.org/id/eprint/5286 | 1256 | 2011-09-29 15:11:58 | 5286 | Freshwater Biological Association
    Publikationsdatum: 2021-07-09
    Beschreibung: Mixing and transport processes in surface waters strongly influence the structure of aquatic ecosystems. The impact of mixing on algal growth is species-dependent, affecting the competition among species and acting as a selective factor for the composition of the biocoenose. Were it not for the ever-changing ”aquatic weather”, the composition of pelagic ecosystems would be relatively simple. Probably just a few optimally adapted algal species would survive in a given water-body. In contrast to terrestrial ecosystems, in which the spatial heterogeneity is primarily responsible for the abundance of niches, in aquatic systems (especially in the pelagic zone) the niches are provided by the temporal structure of physical processes. The latter are discussed in terms of the relative sizes of physical versus biological time-scales. The relevant time-scales of mixing and transport cover the range between seconds and years. Correspondingly, their influence on growth of algae is based on different mechanisms: rapid changes are relevant for the fast biological processes such as nutrient uptake and photosynthesis, and the slower changes are relevant for the less dynamic processes such as growth, respiration, mineralization, and settling of algal cells. Mixing time-scales are combined with a dynamic model of photosynthesis to demonstrate their influence on algal growth.
    Schlagwort(e): Ecology ; Limnology ; Pollution ; Eutrophication ; Algal blooms ; Phytoplankton ; Nutrients (mineral) ; Freshwater lakes ; Physical limnology ; Models ; Growth ; Photosynthesis ; Water mixing
    Repository-Name: AquaDocs
    Materialart: book_section , FALSE
    Format: application/pdf
    Format: application/pdf
    Format: 30-43
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...