ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-12-23
    Description: Abstract
    Description: The deep seismic reflection survey DEKORP 1-Laacher See was conducted as additional measurements in the Laacher See area in 1987 as part of the DEKORP-1 project, one main traverse of the German continental seismic reflection program. This small survey was an attempt to reveal the 3-D crustal structure in an area of the Quaternary East Eifel Volcanism and possibly find some magma chambers in the crust with high-fold near-vertical incidence vibroseis acquisition (DEKORP Research Group, 1991). The measurement consists of a 8,64 km long, multifold 2D seismic line 8701 across the Laacher See in NE-SW direction and two pseudo-3D seismic areas 8702 north of the lake and 8703 beneath the lake with one-fold coverage in each case. Laacher See or Lake Laach is a caldera lake in the Rhineland-Palatinate, Germany, one of the volcanic centres of the East Eifel Volcanic Field. It belongs together with the West Eifel to the youngest volcanic areas in Central Europe. The caldera of the Laacher See was formed about 12 900 years ago after the volcano explosively erupted, and the remaining crust collapsed into the empty magma chamber below. The Laacher See is still considered to be an active volcano, proven by seismic activities and thermal anomalies under the lake. The first processing of the Laacher See data was carried out at the Geophysical Institute of the CAU University Kiel in 1990. Unfortunately, these results have not been preserved or published. According to DEKORP Research Group (1991) the first processing resulted in poor data quality caused by high scattering and attenuation in the volcanic material near the surface. This reflected energy was not enough to image a magma chamber beneath the lake or any other structures. Thus, information about the structure of the Earth’s crust of the Eifel is mainly based on the deep seismic reflexion profile DEKORP 1B, running ca. 25 km to the west from the Laacher See und crossing DEKORP 1A at its northern profile end. In recent years, deep low‐frequency (DLF) earthquakes have been detected in the Laacher See area indicating ongoing magmatic activity in the lower crust and upper mantle (Hensch et al., 2019, Dahm et al. 2020). These and other signatures suggested the reprocessing of the Laacher See data with modern methods. Thus, the 2D seismic line 8701 has been reprocessed in 2020 within the framework of the Master’s thesis by Agafonova (2020) written at the Technical University of Berlin and supervised by the GFZ Potsdam. All reprocessed data come in SEGY trace format, the final sections additionally in PNG or PDF graphic format: as raw FF-sorted unstacked data, as preprocessed CDP-/FF-sorted unstacked data as well as poststack-time/-depth unmigrated and migrated sections. Moreover, the results of the tomographic inversion are included. Detailed information about acquisition and reprocessing parameters of line 8701 can be found in the accompanying Technical Report (Agafonova & Stiller, 2021). The reprocessed results of the Laacher See survey 1987 can be of importance for better understanding the structure of the Eifel crust. Even though significant knowledge gaps and uncertainties exist due to the insufficient data quality, such important questions can already be discussed as: •How complex is the structure beneath the Laacher See? •Can the Mantle-Crust Boundary be defined at ca. 34 km depth? •Are the strongly inclined events in the Upper Crust between 1-5 km depth parts of caldera ring-faults? •Do the reflections between 5-7 km depth indicate boundaries of a possible magma chamber?
    Description: Other
    Description: The German Continental Seismic Reflection Program DEKORP (DEutsches KOntinentales Reflexionsseismisches Programm) was carried out between 1984 – 1999 as the German national reflection seismic program funded by the Federal Ministry of Research and Technology (BMFT), Bonn (now: the Federal Ministry of Education and Research (BMBF)). DEKORP was administrated by the former Geological Survey of Lower Saxony (NLfB), Hanover (now: the State Authority for Mining, Energy and Geology (LBEG)). In 1994 the DEKORP management was taken over by the Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences. The aim of DEKORP was to investigate the deep crustal structure of Germany with high-resolution near-vertical incidence (mostly vibro)seismic acquisition, supplemented by wide-angle seismic and other target-oriented piggy-back experiments, all complemented by optimized methods of data processing and interpretation. The DEKORP project was closely linked with the KTB (German continental deep-drilling program) and was an equivalent to many other deep-seismic programs world-wide such as COCORP, BIRPS, LITHOPROBE, ECORS, CROP, BELCORP, IBERSEIS and many more. The DEKORP-Atlas (Meissner & Bortfeld, 1990) gives a detailed overview about most of the different campaigns and results. In sum, the resulting DEKORP database includes approximately 40 crustal-scale 2D-seismic reflection lines covering a total of ca. 4 700 km and one 3D-seismic reflection survey covering ca. 400 km². Each DEKORP survey is provided with all datasets that are necessary for either a re-processing (i.e. raw unstacked field records in SEGY) or a re-interpretation (i.e. finally processed sections in SEGY or PNG). The raw data are sorted by records or by CDPs. The final data are available as unmigrated or migrated stacks without or with coherency enhancement. Automatical line-drawings are also included. All data come with additional meta information for each domain (source, receiver, CDP) like coordinates, elevations, locations and static corrections combined in ASCII-tables for geometry assignment. Furthermore, all metadata originating from paper copies are made available as scanned files in PNG or PDF, e.g. field and observer reports, location maps in different scales, near-surface profile headers and others. The DEKORP datasets provide unique and deep insights into the subsurface below Germany covering the earth’s crust from the surface to the upper mantle and are increasingly requested by academic institutions and commercial companies. Fields of applications are geothermal development, hazard analysis, hydrocarbon/shale gas exploration, underground gas storage, tunnel construction and much more.
    Keywords: DEKORP ; Deutsches Kontinentales Reflexionsseismisches Programm ; deep crustal structure ; crustal-scale seismic survey ; near-vertical incidence seismic reflection ; Vibroseis acquisition ; Rhenish Massif ; Varisca Orogenic Belt ; Rhenohercynian ; Laacher See Volcano ; East Eifel Volcanic Field ; deep low-frequency earthquakes ; Mohorovičić discontinuity ; geothermal resources ; seismic risks ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 SEISMIC PROFILE ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS ; In Situ/Laboratory Instruments 〉 Profilers/Sounders 〉 SEISMIC REFLECTION PROFILERS ; lithosphere 〉 earth's crust
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-12-22
    Description: Abstract
    Description: This dataset includes surface 3D stereoscopic Digital Image Correlation (3D stereo DIC) images and videos of 9 analogue models on crustal scale rifting with a rotational component. Using a brittle-viscous two-layer setup, the experiments focused on near-surface fault growth, rift segment interaction and rift propagation. All experiments were performed at the Tectonic Modelling Laboratory of the University of Bern (UB). All models consist of a two-layer brittle-viscous set up with a total thickness of 6 cm. Thickness variations in ductile and brittle layers are expressed by the ratio RBD = brittle layer thickness/ductile layer thickness, which ranges from RBD = 1 to RBD = 3. The model set up lies on top of a 5 cm thick foam base with a trapezoidal shape with a height of 900 mm and a pair of bases of 310 mm and 350 mm. The foam block is sliced into segments such that 7 interlayered 0.5 cm thick plexiglass bars prevent foam collapse under the model weight. The foam base is initially compressed between the longitudinal side walls and homogeneously expands during the rotational opening. Applied velocities refer to the divergence of the sidewalls at the outermost point (i.e., furthest away from the rotation axis) and decrease linearly towards the rotation axis. These velocities vary from 10 mm/h over a total run time of 4 h up to 40 mm/h over a total run time of one hour, resulting in identical total extension of ca 13% (given an initial model width of 31 cm) for all models. Detailed descriptions of the experiments as well as monitoring techniques can be found in Schmid et al. (2021).
    Keywords: analogue models of geologic processes ; multi-scale laboratories ; Digital Image Correlation (DIC) / Particle Image Velocimetry (PIV) 〉 StrainMaster (La Vision GmbH) ; continental rifting ; rotational rifting ; EPOS ; 3D stereo DIC ; software tools ; deformation 〉 rifting ; SLR camera ; Sand 〉 Quartz Sand ; surface elevation ; analogue modelling results ; property data of analogue modelling materials ; analogue modelling results ; software tools ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 PLATE BOUNDARIES ; EARTH SCIENCE SERVICES 〉 MODELS 〉 PHYSICAL/LABORATORY MODELS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-12-17
    Description: Abstract
    Description: This data set includes videos depicting the surface evolution (time-lapse photographs and Particle Image Velocimetry or PIV analysis) of 38 analogue models, in five model series (A-E), simulating rift tectonics. In these experiments we examined the influence of differently oriented mantle and crustal weaknesses on rift system development during multiphase rifting (i.e. rifting involving changing divergence directions or -rates) using brittle-viscous set-ups. All experiments were performed at the Tectonic Modelling Laboratory of the University of Bern (UB). The brittle and viscous layers, representing the upper an lower crust, were 3 cm and 1 cm thick, respectively, whereas a mantle weakness was simulated using the edge of a moving basal plate (a velocity discontinuity or VD). Crustal weaknesses were simulated using “seeds” (ridges of viscous material at the base of the brittle layers that locally weaken these brittle layers). The divergence rate for the Model A reference models was 20 mm/h so that the model duration of 2:30 h yielded a total divergence of 5 cm (so that e = 17%, given an initial model width of ca. 30 cm). Multiphase rifting model series B and C involved both a slow (10 mm/h) and fast (100 mm/h) rifting phase of 2.5 cm divergence each, for a total of 5 cm of divergence over a 2:45 h period. Multiphase rifting models series D and E had the same divergence rates (20 mm/h) as the Series A reference models, but involved both an orthogonal (α = 0˚) and oblique rifting (α = 30˚) phase of 2.5 cm divergence each, for a total of 5 cm of divergence over a 2:30 h period. In our models the divergence obliquity angle α was defined as the angle between the normal to the central model axis and the direction of divergence. The orientation and arrangements of the simulated mantle and crustal weaknesses is defined by angle θ (defined as the direction of the weakness with respect to the model axis. An overview of model parameters is provided in Table 1, and detailed descriptions of the model set-up and results, as well as the monitoring techniques can be found in Zwaan et al. (2021).
    Keywords: EPOS ; analogue models of geologic processes ; analogue modelling results ; multi-scale laboratories ; deformation 〉 ductile flow ; deformation 〉 fracturing ; depression ; Digital Image Correlation (DIC) / Particle Image Velocimetry (PIV) 〉 StrainMaster (La Vision GmbH) ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 CRUSTAL MOTION 〉 CRUSTAL MOTION DIRECTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 CRUSTAL MOTION 〉 CRUSTAL MOTION RATE ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 FAULT MOVEMENT 〉 FAULT MOVEMENT DIRECTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 FAULT MOVEMENT 〉 FAULT MOVEMENT RATE ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 LITHOSPHERIC PLATE MOTION 〉 PLATE MOTION DIRECTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 LITHOSPHERIC PLATE MOTION 〉 PLATE MOTION RATE ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 PLATE BOUNDARIES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 STRAIN ; fault 〉 oblique slip fault ; Generic camera ; geologic process ; graben ; graben ; normal fault ; rift valley ; rifting ; Sand 〉 Corundum Sand ; Sand 〉 Quartz Sand ; Sandbox ; Silicon/Silly putty/PDMS ; tectonic process 〉 continental_breakup 〉 rifting ; tectonic setting 〉 extended terrane setting 〉 continental rift setting ; X-ray computed tomographic scanner (CT-scan)
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-11-16
    Description: Abstract
    Description: This data set includes videos depicting the surface evolution (time laps photographs and Particle Image Velocimetry or PIV analsys) of 15 analogue models on rift tectonics, as well as 4D CT imagery (figures and videos) from four of these experiments. The experiments examined the influence of differently oriented mantle and crustal weaknesses on rift system development using a brittle-viscous set-up. All experiments were performed at the Tectonic Modelling Laboratory of the University of Bern (UB). Detailed descriptions of the experiments and monitoring techniques can be found in Zwaan et al. (2021).
    Keywords: EPOS ; European Plate Observing System ; analogue models of geologic processes ; analogue modelling results ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 CRUSTAL MOTION 〉 CRUSTAL MOTION DIRECTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 CRUSTAL MOTION 〉 CRUSTAL MOTION RATE ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 FAULT MOVEMENT 〉 FAULT MOVEMENT DIRECTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 FAULT MOVEMENT 〉 FAULT MOVEMENT RATE ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 LITHOSPHERIC PLATE MOTION 〉 PLATE MOTION DIRECTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 LITHOSPHERIC PLATE MOTION 〉 PLATE MOTION RATE ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 PLATE BOUNDARIES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 STRAIN
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-11-11
    Description: Abstract
    Description: This data set includes the results of digital image correlation of 35 brittle-viscous experiments on gravitational salt tectonics performed at the Tectonic Modelling Lab of the University of Rennes 1 (UR1). The experiments demonstrate the influence of basin geometry on gravity-driven salt tectonics. Detailed descriptions of the experiments can be found in Zwaan et al. (2021) to which this data set is supplementary. The data presented here consist of movies and images displaying the cumulative analogue model surface displacement, digital elevation models as well as profiles of the downslope cumulative displacements and surface elevation.
    Keywords: EPOS ; multi-scale laboratories ; analog models of geologic processes ; salt tectonics ; analog modelling results ; diapir ; Digital Image Correlation (DIC) / Particle Image Velocimetry (PIV) 〉 StrainMaster (La Vision GmbH) ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 PLATE BOUNDARIES ; earth surface setting 〉 subaqueus setting 〉 marine setting ; fold-and-thrust belt ; Gravity sliding simulator ; normal fault ; Sand 〉 Quartz Sand ; sedimentary process 〉 deposition ; Silicon/Silly putty/PDMS ; slope and gravitational features ; SLR camera ; Structure from Motion (SfM) 〉 Photoscan (Agisoft) ; tectonic process 〉 continental_breakup ; tectonic setting 〉 passive continental margin setting
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-11-02
    Description: Abstract
    Description: The profile 9N was recorded in 1988 as part of the DEKORP project, the German deep seismic reflection program. The focus of the DEKORP project was on deep crustal and lithospheric structures and therefore originally not on structures at lower depths. From today's perspective, however, this depth range is of great interest for a wide range of possible technical applications (including medium-depth and deep geothermal projects). The original data is published by Stiller et al. (2019). The profile 9N was reprocessed on behalf of the Hessian Agency of Nature Conservation, Environment and Geology (HLNUG). The focus of the reprocessing was on improving the resolution / mapping of geological structures down to a depth of 6 km (approx. 3 s TWT) to describe the prolongation of faults and geological structures in more detail than in previous studies. In order to achieve these goals and in view of the fact that today's processing and evaluation methods have improved considerably compared to the 1990‘s, a state-of-the-art reprocessing was implemented. In comparison with the original processing (Stiller et al. (2019), more sophisticated processing steps like CRS (Common Reflection Surface) instead of CDP (Common Depth Point) stacking, turning-ray tomography and prestack time and depth migration were carried out. The reprocessed DEKORP-9N survey comprises all datasets newly achieved in addition to the datasets from the original processing (Stiller et al. (2019)), i.e. (1) as unstacked data the raw data, the CRS processed data and the migrated image gathers, and (2) as stacked data the pure CRS stack, the poststack-time as well as prestack-time and prestack-depth migrated sections. Moreover, (3) all velocity models used for the different versions including (4) the separate first-break tomography inversion as well as (5) several attribute analyses (RMS amplitude, instantaneous frequency and phase, Q-factor and others) are contained. All reprocessed data come in SEGY trace format, the final sections additionally in PDF graphic format. A reprocessing report is included as well as again all meta information for each domain (source, receiver, CDP) like coordinates, elevations, locations and static corrections combined in ASCII-tables for geometry assignment purposes. The DEKORP 9 survey was shot across the Tertiary Upper Rhine Graben, which intersects both the Saxothuringian and Moldanubian regions obliquely. Since the Eocene the Rhine Graben represents an active rift system. The 92 km long, E-W trending DEKORP'88-9N profile crosses the northern part of the Upper Rhine Graben. It starts in the crystalline Odenwald, crosses the Tertiary and Quarternary fill of the Rhine Graben and ends in the late Palaeozoic sequences of the Saar-Nahe Basin in the west. There it crosses the Permian rhyolitic Donnersberg intrusion. The DEKORP'88-9N profile is of particular interest to investigate the seismic resolution of the base of the cenozoic graben fill, the prolongation of faults in the sediments of the Northern Upper Rhine Graben, the transition to the crystalline Odenwald at the eastern border fault, the transition to the Saar-Nahe basin in the west and the transition from the crystalline Odenwald to the Buntsandstein Odenwald in the east of the profile. The additional attribute analyses were carried out to possibly detect previously unknown faults or fracture zones. The seismic sections of 9N show different crustal structures on both sides of the graben and some indications of dipping reflections in the mantle on the western side, which could refer to the genesis of the Upper Rhine Graben. An important new feature is the presence of a Permo-Triassic layer in the Upper Rhine Graben, which is significantly thicker than previously mapped (〉 600 m) and thus the upper edge of the basement is situated over 600 m deeper than in the original data. The reprocessing of the DEKORP'88-9N profile was funded by the HLNUG in cooperation with the Agency for Geology and Mining of the state of Rhineland-Palatinate.
    Description: Other
    Description: The German Continental Seismic Reflection Program DEKORP (DEutsches KOntinentales Reflexionsseismisches Programm) was carried out between 1984 - 1997 and funded by the Federal Ministry of Education, Science and Technology (BMFT), now Federal Ministry of Education and Science (BMBF). The data was originally processed in the DEKORP Processing Centre (DPC) at the Institute of Geophysics of the Technical University Clausthal. DEKORP was founded in 1983 with the aim to investigate the deep crustal structure of Germany with high-resolution near-vertical incidence seismic methods. It was closely associated with the deep drilling project KTB (German continental deep-drilling program). One of the main research topics of DEKORP were deep seismic studies to investigate the lithospheric structure beneath Germany. The DEKORP profiles cover approx. 450 km in the state of Hesse and mostly cross areas for which there is only insufficient geological data (i.e. only few deep boreholes). As a governmental agency the HLNUG archives and publishes the data for future applications and usages, such as the search for a repository for nuclear waste in Germany, an expansion of the geophysical database, possibilities for modelling using gravimetric and magnetic data as well as an improvement of the 3D underground model of the state of Hesse. Therefore, the results are directly linked to the new geological 3D model of the state of Hesse, developed by the Technical University of Darmstadt (Hessen3D 2.0 project, BMWi-FKZ: 0325944). The reprocessed DEKORP datasets provide up-to-date unique and deep insights into the subsurface below Germany covering the earth’s crust from the surface to the upper mantle. Fields of applications are geothermal development, hazard analysis, hydrocarbon/shale gas exploration, underground gas storage, tunnel construction and much more.
    Keywords: DEKORP ; Deutsches Kontinentales Reflexionsseismisches Programm ; deep crustal structures ; crustal-scale seismic survey ; near-vertical incidence seismic reflection ; Vibroseis acquisition ; reprocessing ; CRS processing ; prestack migration ; attribute analyses ; Northern Upper Rhine Graben ; Variscan orogenic belts ; Odenwald ; Saar-Nahe Basin ; rift system ; Mohorovičić discontinuity ; sedimentary graben fill ; geothermal resources ; seismic risks ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 SEISMIC PROFILE ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS ; In Situ/Laboratory Instruments 〉 Profilers/Sounders 〉 SEISMIC REFLECTION PROFILERS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-11-02
    Description: Abstract
    Description: The profile 1C was recorded in 1988 as part of the joint reflection venture DEKORP 1 of DEKORP (German Deep Seismic Reflection Program) and BELCORP (Belgian Continental Reflection Seismic Program) groups. The seismic survey of the ca. 75-km long line 1C was conducted to investigate the deep crustal structure of the western Rhenish Massif with high-fold near-vertical incidence vibroseis acquisition. The objectives of the experiment were to analyse deep Variscan and post-Variscan crustal structures in the region and to compare them with the results from the eastern Rhenish Massif gathered from the survey DEKORP 2N. The first results were presented by DEKORP Research Group (1991) and supplemented by many other researches. The Technical Report of line 1C gives detailed information about acquisition and processing parameters. The European Variscides, extending from the French Central Massif to the East European Platform, originated during the collision between Gondwana and Baltica in the Late Palaeozoic. Due to involvement of various crustal blocks in the orogenesis, the mountain belt is subdivided into distinct zones. The external fold-and-thrust belts of the Rhenohercynian and Saxothuringian as well as the predominantly crystalline body of the Moldanubian dominate the central European segment of the Variscides. Polyphase tectonic deformation, magmatism and metamorphic processes led to a complex interlinking between the units. The Rhenohercynian Zone is a foreland fold-and-thrust belt cropping out in the Rhenish Massif which extends from the Ardennes to the Harz Mountains. This geological unit consists predominantly of Devonian and Lower Carboniferous rocks affected by very low-grade metamorphism (DEKORP Research Group, 1991). The survey 1C was carried out in the western part of the Rhenish Massif and intersects the Variscan main structures almost perpendicular. It stretches from the Mosel Syncline to the Saar-Nahe Basin (WNW-ESE) crossing the Devonian metamorphic rocks of the Hunsrueck Mountains, the Northern Phyllite Zone and the Hunsrueck Boundary Fault separating the Rhenohercynian and Saxothuringian Zones. In the northwest 1C joins line 1B which runs through the Hocheifel area. In the southeast the line continues with 9N running across the northern part of the Upper Rhine Graben.
    Description: Other
    Description: The German Continental Seismic Reflection Program DEKORP (DEutsches KOntinentales Reflexionsseismisches Programm) was carried out between 1984 – 1999 as the German national reflection seismic program funded by the Federal Ministry of Research and Technology (BMFT), Bonn [now: the Federal Ministry of Education and Research (BMBF)]. DEKORP was administrated by the former Geological Survey of Lower Saxony (NLfB), Hannover [now: the State Authority for Mining, Energy and Geology (LBEG)]. In 1994 the DEKORP management was taken over by the Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences. The aim of DEKORP was to investigate the deep crustal structure of Germany with high-resolution near-vertical incidence (mostly vibro)seismic acquisition, supplemented by wide-angle seismic and other target-oriented piggy-back experiments, all complemented by optimized methods of data processing and interpretation. The DEKORP project was closely linked with the KTB (German continental deep-drilling program) and was an equivalent to many other deep-seismic programs world-wide such as COCORP, BIRPS, LITHOPROBE, ECORS, CROP, BELCORP, IBERSEIS and many more. The DEKORP-Atlas (Meissner & Bortfeld, 1990) gives a detailed overview about most of the different campaigns and results. In sum, the resulting DEKORP database includes approximately 40 crustal-scale 2D-seismic reflection lines covering a total of ca. 4 700 km and one 3D-seismic reflection survey covering ca. 400 km². Each DEKORP survey is provided with all datasets that are necessary for either a re-processing (i.e. raw unstacked field records in SEGY) or a re-interpretation (i.e. finally processed sections in SEGY or PNG). The raw data are sorted by records or by CDPs. The final data are available as unmigrated or migrated stacks without or with coherency enhancement. Automatical line-drawings are also included. All data come with additional meta information for each domain (source, receiver, CDP) like coordinates, elevations, locations and static corrections combined in ASCII-tables for geometry assignment. Furthermore, all metadata originating from paper copies are made available as scanned files in PNG or PDF, e.g. field and observer reports, location maps in different scales, near-surface profile headers and others. The DEKORP datasets provide unique and deep insights into the subsurface below Germany covering the earth’s crust from the surface to the upper mantle and are increasingly requested by academic institutions and commercial companies. Fields of applications are geothermal development, hazard analysis, hydrocarbon/shale gas exploration, underground gas storage, tunnel construction and much more.
    Keywords: deep crustal structure ; crustal-scale seismic survey ; near-vertical incidence seismic reflection ; Vibroseis acquisition ; Rhenish Massif ; Variscan orogenic belts ; Rhenohercynian ; Saxothuringian ; Mosel Syncline ; Hunsrueck ; Northern Phyllite Zone ; Hunsrueck boundary fault ; Saar-Nahe Basin ; Mohorovičić discontinuity ; geothermal resources ; seismic risks ; DEKORP ; Deutsches Kontinentales Reflexionsseismisches Programm ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 SEISMIC PROFILE ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS ; In Situ/Laboratory Instruments 〉 Profilers/Sounders 〉 SEISMIC REFLECTION PROFILERS ; lithosphere 〉 earth's crust
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-11-02
    Description: Abstract
    Description: The 250 km long profile 3B/MVE (East) was recorded in 1990 as part of the joint seismic reflection venture DEKORP 1990-3/MVE (Muenchberg-Vogtland-Erzgebirge) between the two former German Republics shortly before their unification. The aim of DEKORP 1990-3/MVE was to explore the structure of the crust from the Rhenish Shield through the Bohemian Massif to the Ore Mountains. The entire profile consists of DEKORP 3A, DEKORP 3B/MVE (West) and its prolongation to the east DEKORP 3B/MVE (East). Its total length amounts to about 600 km. 24 short seismic cross lines and associated 3D blocks with single fold coverage were also recorded. The seismic survey of 3B/MVE (East) was conducted to investigate the deep crustal structure of the Saxothuringian Zone of the Central European Variscian Belt along the northern margin of the Bohemian Massif with high-fold near-vertical incidence vibroseis acquisition. The main objectives were to image the deep structures of the Muenchberg Gneiss Complex, to concern the volume of Variscan granites by combining seismic and gravity data as well as to determine the origin and nature of the deep regional NW-trending fault systems. Details of the experiment, preliminary results and interpretations were published by DEKORP Research Group (B) et al. (1994) and Förste, Lück & Schulze (1994). The Technical Report of DEKORP 3B/MVE (East) gives complete information about acquisition and processing parameters. The European Variscides, extending from the French Central Massif to the East European Platform, originated during the collision between Gondwana and Baltica in the Late Palaeozoic. Due to involvement of various crustal blocks in the orogenesis, the mountain belt is subdivided into distinct zones. The external fold-and-thrust belts of the Rhenohercynian and Saxothuringian as well as the predominantly crystalline body of the Moldanubian dominate the central European segment of the Variscides. Polyphase tectonic deformation, magmatism and metamorphic processes led to a complex interlinking between the units. The 3B/MVE (East) line runs in SW-NE direction along the southern margin of the Saxothuringian belt from the Franconian Line, the southwestern boundary fault zone of the Bohemian Massif, to the Lausitz Massif. It traverses the allochthonous Muenchberg Gneiss Complex, the Cambro-Ordovician South Vogtland Syncline Zone, the Eibenstock-Karlovy Vary Granite Complex as well as the Ore Mountains crystalline blocks, the most significant Bouguer gravity low in Central Europe. Besides, the line intersects several NW-fault systems such as the Floeha Zone fault system and the Mid Saxon fault (DEKORP Research Group (B) et al., 1994). The line 3B/MVE (East) is complemented by eight short cross lines. To the west the profile is extended by DEKORP 3B/MVE (West). In the Muenchberg Gneiss Complex the 3B/MVE (East) profile is crossed by DEKORP 4N, which runs parallel to the western border of the Bohemian Massif near the KTB drilling site. Farther to the east the line has an intersection with DEKORP 9501 (GRANU).
    Description: Other
    Description: The German Continental Seismic Reflection Program DEKORP (DEutsches KOntinentales Reflexionsseismisches Programm) was carried out between 1984 – 1999 as the German national reflection seismic program funded by the Federal Ministry of Research and Technology (BMFT), Bonn [now: the Federal Ministry of Education and Research (BMBF)]. DEKORP was administrated by the former Geological Survey of Lower Saxony (NLfB), Hannover [now: the State Authority for Mining, Energy and Geology (LBEG)]. In 1994 the DEKORP management was taken over by the Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences. The aim of DEKORP was to investigate the deep crustal structure of Germany with high-resolution near-vertical incidence (mostly vibro)seismic acquisition, supplemented by wide-angle seismic and other target-oriented piggy-back experiments, all complemented by optimized methods of data processing and interpretation. The DEKORP project was closely linked with the KTB (German continental deep-drilling program) and was an equivalent to many other deep-seismic programs world-wide such as COCORP, BIRPS, LITHOPROBE, ECORS, CROP, BELCORP, IBERSEIS and many more. The DEKORP-Atlas (Meissner & Bortfeld, 1990) gives a detailed overview about most of the different campaigns and results. In sum, the resulting DEKORP database includes approximately 40 crustal-scale 2D-seismic reflection lines covering a total of ca. 4 700 km and one 3D-seismic reflection survey covering ca. 400 km². Each DEKORP survey is provided with all datasets that are necessary for either a re-processing (i.e. raw unstacked field records in SEGY) or a re-interpretation (i.e. finally processed sections in SEGY or PNG). The raw data are sorted by records or by CDPs. The final data are available as unmigrated or migrated stacks without or with coherency enhancement. Automatical line-drawings are also included. All data come with additional meta information for each domain (source, receiver, CDP) like coordinates, elevations, locations and static corrections combined in ASCII-tables for geometry assignment. Furthermore, all metadata originating from paper copies are made available as scanned files in PNG or PDF, e.g. field and observer reports, location maps in different scales, near-surface profile headers and others. The DEKORP datasets provide unique and deep insights into the subsurface below Germany covering the earth’s crust from the surface to the upper mantle and are increasingly requested by academic institutions and commercial companies. Fields of applications are geothermal development, hazard analysis, hydrocarbon/shale gas exploration, underground gas storage, tunnel construction and much more.
    Keywords: DEKORP ; Deutsches Kontinentales Reflexionsseismisches Programm ; deep crustal structure ; crustal-scale seismic survey ; near-vertical incidence seismic reflection ; Vibroseis acquisition ; Variscan Orogenic Belt ; Saxothuringian ; Bohemian Massif ; Muenchberg Gneiss Complex ; South Vogtland Syncline Zone ; Eibenstock-Karlovy Vary Granite Complex ; Ore Mountains ; Lausitz Massif ; Mohorovičić discontinuity ; gravity anomaly ; geothermal resources ; seismic risks ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 SEISMIC PROFILE ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS ; In Situ/Laboratory Instruments 〉 Profilers/Sounders 〉 SEISMIC REFLECTION PROFILERS ; lithosphere 〉 earth's crust
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-11-02
    Description: Abstract
    Description: DEKORP 2S was the first profile carried out in 1984 as part of the DEKORP project, the German deep seismic reflection program. The seismic line has a length of 250 km and was the first and only DEKORP line to be acquired using explosives as source energy. The objectives of the experiment were to explore the deep crustal structure of the Saxothuringian Zone and of its transitions into the adjacent Moldanubian and Rhenohercynian Zones of the Variscan Belt, to obtain evidence about vertical tectonic processes during the Variscan orogenesis, to understand the causes of observed gravity and magnetic anomalies and to recognize and define the Variscan front to the north. In addition, the survey contributed to the International Lithosphere Program (ILP) and the former European Geotraverse (EGT). Details of the experiment, preliminary results and interpretations may be obtained from DEKORP Research Group (1985) or Meissner et al. (1987). The Technical Report of line 2S gives complete information about acquisition and processing parameters. The European Variscides, extending from the French Central Massif to the East European Platform, originated during the collision between Gondwana and Baltica in the Late Palaeozoic. Due to involvement of various crustal blocks in the orogenesis, the mountain belt is subdivided into distinct zones. The external fold-and-thrust belts of the Rhenohercynian and Saxothuringian as well as the predominantly crystalline body of the Moldanubian dominate the central European segment of the Variscides. Polyphase tectonic deformation, magmatism and metamorphic processes led to a complex interlinking between the units. The SE-NW striking DEKORP 2S line runs perpendicular to the Variscan strike direction and crosses the tectonic boundaries between the Moldanubian, Saxothuringian and Rhenohercynian units, which are predominantly covered by Permian and younger sediments (DEKORP Research Group, 1985). Extending from the Danube river to the Taunus Mountains line 2S crosses the Franconian Platform passing through the Noerdlinger Ries, where the impact excavated crystalline basement slivers of the Moldanubian zone, the Spessart Mountains, a part of the Mid German Crystalline High and the NE trending Hessian Through (DEKORP Research Group, 1985). Ending beyond the northeast branch of the Rhine Graben within the Taunus Mountains the profile is extended by line 2N to the northwest.
    Description: Other
    Description: The German Continental Seismic Reflection Program DEKORP (DEutsches KOntinentales Reflexionsseismisches Programm) was carried out between 1984 – 1999 as the German national reflection seismic program funded by the Federal Ministry of Research and Technology (BMFT), Bonn [now: the Federal Ministry of Education and Research (BMBF)]. DEKORP was administrated by the former Geological Survey of Lower Saxony (NLfB), Hannover [now: the State Authority for Mining, Energy and Geology (LBEG)]. In 1994 the DEKORP management was taken over by the Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences. The aim of DEKORP was to investigate the deep crustal structure of Germany with high-resolution near-vertical incidence (mostly vibro)seismic acquisition, supplemented by wide-angle seismic and other target-oriented piggy-back experiments, all complemented by optimized methods of data processing and interpretation. The DEKORP project was closely linked with the KTB (German continental deep-drilling program) and was an equivalent to many other deep-seismic programs world-wide such as COCORP, BIRPS, LITHOPROBE, ECORS, CROP, BELCORP, IBERSEIS and many more. The DEKORP-Atlas (Meissner & Bortfeld, 1990) gives a detailed overview about most of the different campaigns and results. In sum, the resulting DEKORP database includes approximately 40 crustal-scale 2D-seismic reflection lines covering a total of ca. 4 700 km and one 3D-seismic reflection survey covering ca. 400 km². Each DEKORP survey is provided with all datasets that are necessary for either a re-processing (i.e. raw unstacked field records in SEGY) or a re-interpretation (i.e. finally processed sections in SEGY or PNG). The raw data are sorted by records or by CDPs. The final data are available as unmigrated or migrated stacks without or with coherency enhancement. Automatical line-drawings are also included. All data come with additional meta information for each domain (source, receiver, CDP) like coordinates, elevations, locations and static corrections combined in ASCII-tables for geometry assignment. Furthermore, all metadata originating from paper copies are made available as scanned files in PNG or PDF, e.g. field and observer reports, location maps in different scales, near-surface profile headers and others. The DEKORP datasets provide unique and deep insights into the subsurface below Germany covering the earth’s crust from the surface to the upper mantle and are increasingly requested by academic institutions and commercial companies. Fields of applications are geothermal development, hazard analysis, hydrocarbon/shale gas exploration, underground gas storage, tunnel construction and much more.
    Keywords: deep crustal structure ; crustal-scale seismic survey ; near-vertical incidence seismic reflection ; explosive seismics ; Variscan Orogenic Belt ; Rhenohercynian ; Saxothuringian ; Moldanubian ; Franconian Platform ; Noerdlinger Ries ; Spessart Mountains ; Mid German Crystalline High ; Hessian Through ; Taunus Mountains ; Mohorovičić discontinuity ; geothermal resources ; seismic risks ; DEKORP ; Deutsches Kontinentales Reflexionsseismisches Programm ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 SEISMIC PROFILE ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS ; In Situ/Laboratory Instruments 〉 Profilers/Sounders 〉 SEISMIC REFLECTION PROFILERS ; lithosphere 〉 earth's crust
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2021-10-30
    Description: Abstract
    Description: The 3D geomechanical-numerical modelling of the in-situ stress state aims at a continuous description of the stress state in a subsurface volume. It requires observed stress information within the model volume that are used as a reference. Once the modelled stress state is in agreement with the observed reference stress data the model is assumed to provide the continuous stress state in its entire volume. The modelled stress state is fitted to the reference stress data records by adaptation of the displacement boundary conditions. This process is herein referred to as calibration. Depending on the amount of available stress data records and the complexity of the model the manual calibration is a lengthy process of trial-and-error modelling and analysis until best-fit boundary conditions are found. The Fast Automatic Stress Tensor Calibration (FAST Calibration) is a Python function that facilitates and speeds up this calibration process. By using a linear regression it requires only three model scenarios with different boundary conditions. The stress states from the three model scenarios at the locations of the reference stress data records are extracted. The differences between the modelled and observed stress states are used for a linear regression that allows to compute the displacement boundary conditions required for the best-fit modelled stress state. If more than one reference stress state is provided, the influence of the individual observed stress data records on the best-fit boundary conditions can be weighted.
    Description: Other
    Description: GNU General Public License, Version 3, 29 June 2007 Copyright © 2021 Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Potsdam, Germany PyFAST Calibration is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. PyFAST Calibration is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/.
    Keywords: geomechanical-numerical model ; stress ; in-situ stress ; model calibration ; stress tensor calibration ; modelling tool ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 NEOTECTONICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 CRUSTAL MOTION 〉 CRUSTAL MOTION DIRECTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 FAULT MOVEMENT ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 PLATE BOUNDARIES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 STRESS
    Type: Software , Software
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...