ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Inorganic Chemistry  (1,631)
  • Organic Chemistry  (1,512)
  • Aircraft Stability and Control
  • 2020-2022  (2)
  • 1940-1944  (3,160)
Collection
Keywords
Publisher
Years
Year
  • 1
    Publication Date: 2020-01-23
    Description: This presentation is a refinement of an earlier presentation describing the methods of generating models used for designing control laws for use in vehicles with significant structural effects.
    Keywords: Aircraft Stability and Control
    Type: AFRC-E-DAA-TN76537 , AIAA SciTech Forum 2020; Jan 06, 2020 - Jan 10, 2020; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-01-22
    Description: The lightweight structures and unconventional configurations being considered for the next generation of aircraft mean that any effort to predict or control the flight dynamics is impacted by the structural dynamics. One of the most severe forms of coupling between aeroelasticity and flight dynamics is an instability called body freedom flutter. The existing tools often assume a relatively weak effect of structural dynamics on the flight dynamics, and are therefore incapable of modeling strong interactions like body freedom flutter. A method of combining different sources of data traditionally used for aeroelasticity and flight dynamics is described by reconciling many of the differences between these models. By building upon past modeling efforts, a level of familiarity in the approach is achieved. Generally the differences from the traditional approaches are subtle but significant. The traditional frequency domain flutter model in a modal coordinate system is converted to a form consistent with a time domain flight dynamics model. The time domain rational function approximation about a non-inertial coordinate system and the unique constraints for the conversion between the inertial and non-inertial coordinate systems are discussed. A consistent transformation of the states of aeroelastic models to flight dynamics models is derived, which enables the integration of data from higher fidelity computational fluid dynamics models or wind-tunnel testing. The present method of integrating multidisciplinary data was used to create models that compare well with X-56A flight-test data, including conditions past the flutter speed.
    Keywords: Aircraft Stability and Control
    Type: AFRC-E-DAA-TN75452 , AIAA SciTech Forum 2020; Jan 06, 2020 - Jan 10, 2020; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-13
    Description: This report outlines the flight conditions that are usually critical in determining the design of components of an airplane which affect its stability and control characteristics. The wind-tunnel tests necessary to determine the pertinent data for these conditions are indicated, and the methods of computation used to translate these data into characteristics which define the flying qualities of the airplane are illustrated.
    Keywords: Aircraft Stability and Control
    Type: NACA/TR-781
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-13
    Description: Problems relating to the stability and control of tailless airplanes are discussed in consideration of contemporary experience and practice.
    Keywords: Aircraft Stability and Control
    Type: NACA/TR-796
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-13
    Description: Field measurements were made on a fighter airplane to determine the approximate magnitude of the horizontal tail loads in accelerated flight. In these flight measurements, pressures at a few points were used as an index of the tail loads by correlating these pressures with complete pressure-distribution data obtained in the NACA full-scale tunnel. In addition, strain gages and motion pictures of tail deflections were used to explore the general nature and order of magnitude of fluctuating tail loads in accelerated stalls.
    Keywords: Aircraft Stability and Control
    Type: NACA/TR-792
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-13
    Description: The relation between the elevator hinge-moment parameters and the control-forces for changes in forward speed and in maneuvers is shown for several values of static stability and elevator mass balance.
    Keywords: Aircraft Stability and Control
    Type: NACA/TR-791
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: An investigation has been made to determine the motions of and the flight paths describe by a Navy dive-bombing airplane in simulated diving attacks. The data necessary to evaluate these items, with the exception of the atmospheric wind data, were obtained from automatic recording instruments installed entirely within the airplane. The atmospheric wind data were obtained from the ground by the balloon-theodolite method. The results of typical dives at various dive angles are presented in the form of time histories of the motion of the airplane as well as flight paths calculated with respect to still air and with respect to the ground.
    Keywords: Aircraft Stability and Control
    Type: NACA-ACR-248 , NACA-SR-248
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-12
    Description: Results of a study to determine the effects on turning performance due to various assumed modifications to a typical Naval fighter airplane are presented. The modifications considered included flaps of various types, both part and full space, increased supercharging, and increased wing loading. The calculations indicated that near the low-speed end of the speed range, the turning performance, as defined by steady level turns at a given speed, would be improved to some extent by any of the flaps considered at altitudes up to about 25,000 feet. (If turning is not restricted to the conditions of no loss of speed or altitude, more rapid turning can, of course, be accomplished with the aid of flaps, regardless of altitude.) Fowler flaps and NACA slotted flaps appeared somewhat superior to split or perforated split flaps for maneuvering purposes, particularly if the flap position is not adjustable. Similarly, better turning performance should be realized with full-span than with part-span flaps. Turning performance over the lower half of the speed range would probably not be materially improved at any altitude by increased supercharging of the engine unless the propeller were redesigned to absorb the added power more effectively; with a suitable propeller the turning performance at high altitudes could probably be greatly improved with increased supercharging. A reduction in wing area with the aspect ratio held constant would result in impairment of turning performance over practically the entire speed range at all altitudes.
    Keywords: Aircraft Stability and Control
    Type: NACA-ACR-222 , NACA-SR-222
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-12
    Description: The effects of direction of propeller rotation on factors affecting the longitudinal stability of the XB-28 airplane were measured on a 1/10-scale model in the 7- by 10-foot tunnel of the Ames Aeronautical Laboratory. The main effect observed was that caused by regions of high downwash behind the nacelles (power off as well as power on with flaps neutral). The optimum direction of propeller rotation, both propellers rotating up toward the fuselage, shifted this region off the horizontal tail and thus removed its destabilizing effect. Rotating both propellers downward toward the fuselage moved it inboard on the tail and accentuated the effect, while rotating both propellers right hand had an intermediate result. Comparisons are made of the tail effects as measured by force tests with those predicted from the point-by-point downwash and velocity surveys in the region of the tail. These surveys in turn are compared with the results predicted from available theory.
    Keywords: Aircraft Stability and Control
    Type: NACA-ACR-224 , NACA-SR-224
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-12
    Description: The aileron characteristics of a Grumman F4F-3 airplane were determined in flight by means of NACA recording and indicating instruments. The results show that the ailerons met NACA minimum requirements for satisfactory control throughout a limited speed range. A helix angle of approximately 0.07 radian was produced with flaps down at speeds from 90 to 115 miles per hour indicated airspeed and with flaps up from 115 to 200 miles per hour. With flaps up at 90 miles per hour, the helix angle dropped to 0.055 radian; above 200 miles per hour heavy aileron stick forces seriously restricted maneuverability in roll.
    Keywords: Aircraft Stability and Control
    Type: NACA-ACR-239 , NACA-SR-239
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...