ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-08-03
    Description: Abstract
    Description: The data set contains stress-strain data of Carrara marble experimentally deformed in triaxial compression at temperatures of 20 – 800°C, confining pressures of 30 – 300 MPa, and strain rates between 10-3 and 10-6 s-1. This range covers conditions, at witch marble deforms in the semi-brittle regime, i.e., strength depends on all parameters, but with different sensitivity. Semi-brittle deformation behavior is expected to be important in the mid continental crust. The experiments were conducted in the Experimental Rock Deformation Laboratory of the GFZ German Research Centre for Geosciences in Potsdam, Germany. The data are separated into 91 individual ASCII files, one for each sample. The corresponding temperature, pressure and strain rate conditions are listed in Tab. 1. of the data description and in the associated work by Rybacki et al. (submitted).
    Description: Methods
    Description: Cylindrical samples were prepared from Carrara marble (Bianco Lorano, Apuane Alps, Italy). Samples denoted CMxx, where xx is sample number, were 20 mm long and 10 mm in diameter; samples Mbxx were 60 mm long and 30 mm in diameter. Both set of samples were dry and deformed in two different deformation apparatuses using Argon gas as confining medium. Raw data were axial force and axial displacement, measured with a load cell and LVDT, respectively. Raw data (axial force and displacement) were converted to stress and strain assuming constant volume deformation. All data are corrected for system compliance and jacket strength.
    Keywords: marble ; semi-brittle deformation ; creep ; twinning-induced plasticity ; EPOS ; European Plate Observing System ; multi-scale laboratories ; rock and melt physical properties ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 SEDIMENTS ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 STRAIN ; Patterson Apparatus ; Strength 〉 Triaxial Compressive Strength
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-08-17
    Description: Abstract
    Description: This dataset is supplemental to the paper Wallis et al. (2020) and contains data derived from syn-chrotron X-ray diffraction, electron backscatter diffraction (EBSD), high-angular resolution electron backscatter diffraction (HR-EBSD), and scanning transmission electron microscopy (STEM). The da-taset consists primarily of measurements of the effect of annealing on stress heterogeneity meas-ured by X-ray diffraction; maps of lattice orientation measured by EBSD; maps of lattice rotations, densities of geometrically necessary dislocations (GNDs), and heterogeneity in residual stress measured by HR-EBSD; and images of dislocations obtained by STEM. Data are provided as 66 tab delimited text files organised and labelled by the figure in which they first appear within Wallis et al. (2020). Table 1 of the data description file presents an overview of the datasets and Table 2 provides a description of each data file. Data types are also indicated in the file names.
    Keywords: Low-temperature plasticity ; olivine ; synchrotron X-ray diffraction ; electron backscatter diffraction ; EBSD ; high-angular resolution electron backscatter diffraction ; HR-EBSD ; scanning transmission electron microscopy ; STEM ; geometrically necessary dislocation ; GND ; residual stress ; EPOS ; multi-scale laboratories ; rock and melt physical properties ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 IGNEOUS ROCKS 〉 IGNEOUS ROCK PHYSICAL/OPTICAL PROPERTIES 〉 HARDNESS ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 MINERALS 〉 MINERAL PHYSICAL/OPTICAL PROPERTIES 〉 COMPOSITION/TEXTURE ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 MINERALS 〉 MINERAL PHYSICAL/OPTICAL PROPERTIES 〉 HARDNESS ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 STRAIN ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 STRESS ; Hardness ; Multi Anvil ; olivine ; Strength 〉 Yield Strength ; Triaxial
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-08-17
    Description: Abstract
    Description: We have installed 19 new Global Navigation Satellite System (GNSS) markers in the Hindu Kush (NE-Afghanistan) and the North Pamir front (Alai valley) and measured a total of 25 new and existing markers, if possible annually between 2014 and 2020 in survey mode. The stations are positioned along three profiles crossing the NE-striking Panjsheer fault and N-striking Badakhshan fault in the Hindu Kush, and the E-striking Pamir thrust system at the Trans Alai Range. The Hindu Kush survey data are the first of their kind in Afghanistan. The Pamir profile densifies a 1 Hz-GNSS profile that was installed in the Altyndara valley in 2013-2015; the GNSS time-series are affected by the 2015 Mw7.2 Sarez, Central Pamir, earthquake and probably the 2016 Mw6.4 Sary-Tash earthquake. The data are presented in receiver independent exchange (RNX) format and complemented by logsheets, field photos and a technical report describing the surveys in more detail.
    Description: Methods
    Description: The markers are 100 mm long stainless steel rods of 8 mm diameter drilled and glued into bedrock. Marker positions were measured for nearly 48 hrs per measurements at a sampling rate of 30 s. For each profile, we collected data roughly in the same time of the year to minimize seasonal signal contributions. In Afghanistan, we used Trimble NetR9 receiver and Trimble Zephyr Geodetic 2 antenna (TRM57971.00 ) on a leveled spike mount with a fixed height of 12.2 cm. In the Pamir, we used a Topcon GP-1000 receiver and a Topcon TPSPG_A1 antenna on a 15 cm long spike mount that was leveled by three additional screws, providing horizontal adjustment for the table embracing the central spike. In all surveys the antenna cable plug was oriented towards North whenever possible. Measurement conditions were archived on paper log sheets and photographs. Trimble and Topcon proprietary data formats were converted to ASCII-files using the Trimble software "runpkr00", and then into exchangeable RINEX data using the software "TEQC" (https://doi.org/10.1007/PL00012778), which can be downloaded from the UNAVCO webpage. At a last stage, mandatory metadata - e.g. antenna and receiver types, marker names, antenna offsets - were added to the header information of the RINEX files.
    Description: TechnicalInfo
    Description: The presented data include daily observations in Receiver INdependent EXchange (RINEX) format. These are organized in yearly and daily folders ("RNX/YYYY/DOI/"). Further documentation is found in the technical report ("ReportFieldWork.pdf") with additional details regarding the installation and (re-)measurement of the network, logsheets documenting additional survey parameters ("logsheets") and example pictures taken during data acquisition ("photos").
    Keywords: survey mode measurements ; Panjsheer fault ; Badakhshan fault ; Main Pamir Thrust ; Altyndara ; Alai valley ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 GNSS RECEIVER ; EARTH SCIENCE 〉 OCEANS 〉 MARINE GEOPHYSICS 〉 PLATE TECTONICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 TECTONIC PROCESSES 〉 OROGENIC MOVEMENT ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 TECTONIC PROCESSES 〉 SUBDUCTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 NEOTECTONICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 CRUSTAL MOTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 FAULT MOVEMENT 〉 FAULT MOVEMENT DIRECTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 FAULT MOVEMENT 〉 FAULT MOVEMENT RATE ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 LITHOSPHERIC PLATE MOTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 STRAIN ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 STRESS ; EARTH SCIENCE SERVICES 〉 DATA ANALYSIS AND VISUALIZATION 〉 GLOBAL POSITIONING SYSTEMS ; land 〉 world 〉 Asia 〉 Central Asia
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-09-13
    Description: Abstract
    Description: Neogene indentation of the Adriatic plate into Europe led to major modifications of the Alpine orogenic structures and style of deformation in the Eastern Alps. Especially, the offset of the Periadriatic Fault by the Northern Giudicarie Fault marks the initiation of strike-slip faulting and lateral extrusion of the Eastern Alps. Questions remain on the exact role of this fault zone in changes of the Alpine orogen at depth. This necessitates quantitative analysis of the shortening, kinematics and depth of decoupling underneath the Northern Giudicarie Fault and associated fold-and thrust belt in the Southern Alps. Tectonic balancing of a network of seven cross sections through the Giudicarie Belt parallel to the local shortening direction reveals that it comprises two kinematic domains with different amounts and partly overlapping ages of shortening. This data publication provides the cross sections that were not shown within Verwater et al. (2021, submitted to Solid Earth) (see figure A1.1 for section traces) but show lateral variations in shortening in present-day cross-sections across the study area (section A1.1). Cross sections 1, 5 and 6, which are discussed within the manuscript, will be described in more detail within section A1.2 (cross section 1), A1.3 (cross section 5) and A1.4 (cross section 6). In addition, the approach used for forward modelling in Move will be shown within section A2, as well as alternative kinematic scenarios that were tested for Cross sections 6. Section B describes the methods and datasets used for obtaining the location and depth of seismicity plotted along cross sections 1, 5 and 6 in Verwater et al. (submitted).
    Keywords: Structural Geology ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 FAULT MOVEMENT 〉 FAULT MOVEMENT DIRECTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 FAULT MOVEMENT 〉 FAULT MOVEMENT RATE ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 FOLDS ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 STRAIN ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 STRESS ; lithosphere 〉 earth's crust 〉 fault
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-09-24
    Description: Abstract
    Description: This dataset is supplementary material to "What controls the presence and characteristics of aftershocks in rock fracture in the lab?" by Joern Davidsen, Thomas H. W. Goebel, Grzegorz Kwiatek, Sergei Stanchits, Jordi Baro and Georg Dresen (Davidsen et al., 2021). The dataset contains source parameters of acoustic emission events recorded during triaxial fracture and friction (stick-slip) experiments performed on two Westerly Granite samples, Aue Granite and Flechtigen Sandstone. Basic seismic catalog associated with each experiment contains origin time, hypocentral location in local Cartesian coordinate system of the sample, acoustic-emission derived magnitude and polarity coefficient (a simplified measure of mechanism type: shear, pore opening or collapse). Extended catalog information is available for selected experiments including information whether event is background seismicity, trigger of following events or triggered by preceding events. In addition, we provide information on focal mechanisms calculated in each experiment using full moment tensor inversion. Focal mechanism catalogs include information on strike, dip and rake of two nodal planes, and percentage of isotropic, clvd and double-couple components of the full moment tensor. The detailed description of catalog is provided in the data description file which is also included in the zip folder of the data.
    Keywords: earthquake triggering ; rock mechanics ; acoustic emission ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 IGNEOUS ROCKS ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 SEISMIC PROFILE 〉 SEISMIC BODY WAVES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 STRAIN ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 STRESS ; EARTH SCIENCE SERVICES 〉 MODELS 〉 PHYSICAL/LABORATORY MODELS ; In Situ/Laboratory Instruments ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers 〉 SEISMOMETERS ; physical property 〉 rock mechanics
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-09-27
    Description: Abstract
    Description: Faults and fractures form the largest contrast of fluid flow in the subsurface, while their permeability is highly affected by effective pressure changes. In this experimental study, fractured low-permeability Flechtingen (Rotliegend) sandstones were cyclically loaded in a MTS tri-axial compression cell. Two different loading scenarios were considered: “continuous cyclic loading” (CCL) and “progressive cyclic loading” (PCL). During continuous cyclic loading, a displaced tensile fracture was loaded hydrostatically from 2 to 60 MPa in several repeated cycles. During progressive cyclic loading, the load was increased with a step-wise function (15, 30, 45 and 60 MPa) and unloaded after every loading step. For full elasticity of rock matrix deformation each rock sample has been preconditioned up to 65 MPa. After that, an artificial tensile fracture was introduced into the sample using the Brazilian Disk test. The fractured sample was installed into the MTS triaxial cell at a given offset of 0.5 mm and hydrostatic loading was applied accordingly. The fracture permeability was measured continuously using the cubic law calculated from the hydraulic aperture. Fracture closure was measured using LVDT extensometers during the entire experiment and the resulting fracture closure and stiffness was calculated accordingly. The total deformation of the sample was corrected by the amount of elastic deformation of the rock matrix to obtain the fracture closure only. Potential changes to the fracture surface topography before and after the experiments were analysed from high-resolution surface scans obtained by a 3D profilometer using the fringe pattern projection. The scale-independent roughness exponent was calculated using power spectral density method assuming self-affinity. The fracture aperture distribution and contact-area ratio was calculated by matching the best fitting principal planes of the bottom and top surface and applying a grid search algorithm. The results showed a “stress-memory” effect of fracture stiffness during progressive loading that can be used to identify previous stress states in fractures. This effect is characterized by a transition from a non-linear to a linear (reversible to non-reversible) behaviour of specific fracture stiffness when a previous stress-maximum is exceeded. Furthermore, the evolution of fracture permeability shows less reduction during progressive cyclic loading compared to continuous cyclic loading. The data measured during the flow-through experiment under varying effective pressure are provided in the file “MTS_data.zip”. The data are provided as separate text-files as well as in Excel format with different spreadsheets, such that each figure in the paper can be recalculated and that the underlying data is comprehensive. The name of all three rock samples is given in the file name including the type of the experiment (CCL or PCL). The fracture surfaces and the fracture aperture distributions are found within the file “Surface_data.zip”. This file contains the fracture data of each of the three rock samples as point cloud data (text-files), as well the data calculated from the surfaces.
    Keywords: laboratory testing ; fracture ; permeability ; stiffness ; cyclic loading ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 SEDIMENTARY ROCKS 〉 SEDIMENTARY ROCK PHYSICAL/OPTICAL PROPERTIES ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 SEDIMENTS ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 STRAIN
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-11-16
    Description: Abstract
    Description: This data set includes videos depicting the surface evolution (time laps photographs and Particle Image Velocimetry or PIV analsys) of 15 analogue models on rift tectonics, as well as 4D CT imagery (figures and videos) from four of these experiments. The experiments examined the influence of differently oriented mantle and crustal weaknesses on rift system development using a brittle-viscous set-up. All experiments were performed at the Tectonic Modelling Laboratory of the University of Bern (UB). Detailed descriptions of the experiments and monitoring techniques can be found in Zwaan et al. (2021).
    Keywords: EPOS ; European Plate Observing System ; analogue models of geologic processes ; analogue modelling results ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 CRUSTAL MOTION 〉 CRUSTAL MOTION DIRECTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 CRUSTAL MOTION 〉 CRUSTAL MOTION RATE ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 FAULT MOVEMENT 〉 FAULT MOVEMENT DIRECTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 FAULT MOVEMENT 〉 FAULT MOVEMENT RATE ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 LITHOSPHERIC PLATE MOTION 〉 PLATE MOTION DIRECTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 LITHOSPHERIC PLATE MOTION 〉 PLATE MOTION RATE ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 PLATE BOUNDARIES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 STRAIN
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-12-17
    Description: Abstract
    Description: This data set includes videos depicting the surface evolution (time-lapse photographs and Particle Image Velocimetry or PIV analysis) of 38 analogue models, in five model series (A-E), simulating rift tectonics. In these experiments we examined the influence of differently oriented mantle and crustal weaknesses on rift system development during multiphase rifting (i.e. rifting involving changing divergence directions or -rates) using brittle-viscous set-ups. All experiments were performed at the Tectonic Modelling Laboratory of the University of Bern (UB). The brittle and viscous layers, representing the upper an lower crust, were 3 cm and 1 cm thick, respectively, whereas a mantle weakness was simulated using the edge of a moving basal plate (a velocity discontinuity or VD). Crustal weaknesses were simulated using “seeds” (ridges of viscous material at the base of the brittle layers that locally weaken these brittle layers). The divergence rate for the Model A reference models was 20 mm/h so that the model duration of 2:30 h yielded a total divergence of 5 cm (so that e = 17%, given an initial model width of ca. 30 cm). Multiphase rifting model series B and C involved both a slow (10 mm/h) and fast (100 mm/h) rifting phase of 2.5 cm divergence each, for a total of 5 cm of divergence over a 2:45 h period. Multiphase rifting models series D and E had the same divergence rates (20 mm/h) as the Series A reference models, but involved both an orthogonal (α = 0˚) and oblique rifting (α = 30˚) phase of 2.5 cm divergence each, for a total of 5 cm of divergence over a 2:30 h period. In our models the divergence obliquity angle α was defined as the angle between the normal to the central model axis and the direction of divergence. The orientation and arrangements of the simulated mantle and crustal weaknesses is defined by angle θ (defined as the direction of the weakness with respect to the model axis. An overview of model parameters is provided in Table 1, and detailed descriptions of the model set-up and results, as well as the monitoring techniques can be found in Zwaan et al. (2021).
    Keywords: EPOS ; analogue models of geologic processes ; analogue modelling results ; multi-scale laboratories ; deformation 〉 ductile flow ; deformation 〉 fracturing ; depression ; Digital Image Correlation (DIC) / Particle Image Velocimetry (PIV) 〉 StrainMaster (La Vision GmbH) ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 CRUSTAL MOTION 〉 CRUSTAL MOTION DIRECTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 CRUSTAL MOTION 〉 CRUSTAL MOTION RATE ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 FAULT MOVEMENT 〉 FAULT MOVEMENT DIRECTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 FAULT MOVEMENT 〉 FAULT MOVEMENT RATE ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 LITHOSPHERIC PLATE MOTION 〉 PLATE MOTION DIRECTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 LITHOSPHERIC PLATE MOTION 〉 PLATE MOTION RATE ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 PLATE BOUNDARIES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 STRAIN ; fault 〉 oblique slip fault ; Generic camera ; geologic process ; graben ; graben ; normal fault ; rift valley ; rifting ; Sand 〉 Corundum Sand ; Sand 〉 Quartz Sand ; Sandbox ; Silicon/Silly putty/PDMS ; tectonic process 〉 continental_breakup 〉 rifting ; tectonic setting 〉 extended terrane setting 〉 continental rift setting ; X-ray computed tomographic scanner (CT-scan)
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...