ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • brokerage  (1)
  • carbon sequestration  (1)
  • Blackwell Publishing Ltd  (2)
  • Nature Publishing Group
  • Public Library of Science
  • 2020-2022  (2)
  • 1960-1964
Collection
Publisher
  • Blackwell Publishing Ltd  (2)
  • Nature Publishing Group
  • Public Library of Science
  • Oxford, UK  (2)
Years
Year
  • 1
    Publication Date: 2021-06-28
    Description: Efforts to collaboratively manage the risk of flooding are ultimately based on individuals learning about risks, the decision process, and the effectiveness of decisions made in prior situations. This article argues that much can be learned about a governance setting by explicitly evaluating the relationships through which influential individuals and their immediate contacts receive and send information to one another. We define these individuals as “brokers,” and the networks that emerge from their interactions as “learning spaces.” The aim of this article is to develop strategies to identify and evaluate the properties of a broker's learning space that are indicative of a collaborative flood risk management arrangement. The first part of this article introduces a set of indicators, and presents strategies to employ this list so as to systematically identify brokers, and compare their learning spaces. The second part outlines the lessons from an evaluation that explored cases in two distinct flood risk management settings in Germany. The results show differences in the observed brokers' learning spaces. The contacts and interactions of the broker in Baden‐Württemberg imply a collaborative setting. In contrast, learning space of the broker in North Rhine‐Westphalia lacks the same level of diversity and polycentricity.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: MWK Baden‐Württemberg
    Keywords: 333.91 ; brokerage ; collaborative water governance ; comanagement ; comparative analysis ; social networks
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-16
    Description: The application of biochar to agricultural soils to increase nutrient availability, crop production and carbon sequestration has gained increasing interest but data from field experiments on temperate, marginal soils are still under‐represented. In the current study, biochar, produced from organic residues (digestates) from a biogas plant, was applied with and without digestates at low (3.4 t ha−1) and intermediate (17.1 t ha−1) rates to two acidic and sandy soils in northern Germany that are used for corn (Zea mays L.) production. Soil nutrient availability, crop yields, microbial biomass and carbon dioxide (CO2) emissions from heterotrophic respiration were measured over two consecutive years. The effects of biochar application depended on the intrinsic properties of the two tested soils and the biochar application rates. Although the soils at the fallow site, with initially low nutrient concentrations, showed a significant increase in pH, soil nutrients and crop yield after low biochar application rates, a similar response was found at the cornfield site only after application of substantially larger amounts of biochar. The effect of a single dose of biochar at the beginning of the experiment diminished over time but was still detectable after 2 years. Whereas plant available nutrient concentrations increased after biochar application, the availability of potentially phytotoxic trace elements (Zn, Pb, Cd, Cr) decreased significantly, and although slight increases in microbial biomass carbon and heterotrophic CO2 fluxes were observed after biochar application, they were mostly not significant. The results indicate that the application of relatively small amounts of biochar could have positive effects on plant available nutrients and crop yields of marginal arable soils and may decrease the need for mineral fertilizers while simultaneously increasing the sequestration of soil organic carbon. Highlights A low rate of biochar increased plant available nutrients and crop yield on marginal soils. Biochar application reduced the availability of potentially harmful trace elements. Heterotrophic respiration showed no clear response to biochar application. Biochar application may reduce fertilizer need and increase carbon sequestration on marginal soils.
    Description: German Academic Exchange Service http://dx.doi.org/10.13039/501100001655
    Description: Institute Strategic Programme grants, “Soils to Nutrition”
    Keywords: 631.4 ; black carbon ; carbon sequestration ; corn ; digestate ; heterotrophic respiration ; marginal soils ; microbial biomass
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...