ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (7)
  • American Meteorological Society
  • Cambridge University Press
  • Nature Publishing Group
  • Springer Science + Business Media
  • 2020-2022  (2)
  • 1960-1964  (5)
  • 1
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature, 196 (4852). pp. 351-352.
    Publication Date: 2020-09-09
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Cambridge University Press
    In:  Journal of Fluid Mechanics, 18 (03). pp. 409-437.
    Publication Date: 2020-07-24
    Description: In this paper we examine the steady, two-dimensional convective motion which occurs in a horizontal circular cylinder whose wall is non-uniformly heated. One observes several qualitatively different physical phenomena depending on the wall temperature distribution and the value of the Rayleigh number. The low-Rayleigh-number behaviour for the single convective cell heated from below is related to the classical Rayleigh stability problem. The critical Rayleigh number for the single circular cell is approximately five times the value for Rayleigh's multi-celluar configuration. The flow which exhibits a nearly parabolic velocity profile near the critical Rayleigh number, gradually changes to a rigidly-rotating-core behaviour as the Rayleigh number increases. The speed of core rotation is a function of the Prandtl number, whereas the boundary-layer thickness is primarily a function of the Rayleigh number. When the heating is from side to side, the solution shows that as the Rayleigh number increases the core motion is progressively arrested leaving a narrow circulating band of fluid adjacent to the wall. An oblique heating produces a hybrid phenomenon, a low-Rayleigh-number behaviour which is characteristic of the sideways heating case and a high-Rayleigh-number interior motion characteristic of the bottom heating case. To determine the core motion in the high-Rayleigh-number limit, Batchelor's work concerning the uniqueness of incompressible, exactly steady, closed streamline flows with small viscosity is extended to include flows with small thermal conductivity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Cambridge University Press
    In:  Geological Magazine, 99 (02). pp. 164-172.
    Publication Date: 2020-07-31
    Description: The results of an examination of one quarry within the gneisses of the Bartica Assemblage are described and the validity of these results throughout the whole of the Bartica Assemblage is discussed. The foliation and banding of the gneisses at Kereti Quarry are mainly the results of tectonism; concomitant metamorphism within the Amphibolite Facies was succeeded by a two-phase metasomatism involving successive additions of Na and K. These results appear valid throughout the Bartica Assemblage and it is further suggested that the main rock type distribution in the Bartica Assemblage is also controlled by tectonism.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Cambridge University Press
    In:  Geological Magazine, 101 (6). pp. 541-547.
    Publication Date: 2020-07-31
    Description: Textural differences in the occurrence of microcline define augen gneisses, subhedral porphyroblastic gneisses and euhedral porphyroblastic gneisses within the Bartica Assemblage, British Guiana. The introduction of microcline is metasomatic and the nature of the porphyroblasts appears to be a reflection of tectonic control during their development.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Cambridge University Press
    In:  Journal of Fluid Mechanics, 12 (04). p. 481.
    Publication Date: 2020-07-24
    Description: The energy flux in a finite-depth gravity-wave spectrum resulting from weak non-linear couplings between the spectral components is evaluated by means of a perturbation method. The fifth-order analysis yields a fourth-order effect comparable in magnitude to the generating and dissipating processes in wind-generated seas. The energy flux favours equidistribution of energy and vanishes in the limiting case of a white, isotropic spectrum. The influence on the equilibrium structure of fully developed wave spectra and on other phenomena in random seas is discussed briefly.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-01-08
    Description: Radiocarbon (14C) ages cannot provide absolutely dated chronologies for archaeological or paleoenvironmental studies directly but must be converted to calendar age equivalents using a calibration curve compensating for fluctuations in atmospheric 14C concentration. Although calibration curves are constructed from independently dated archives, they invariably require revision as new data become available and our understanding of the Earth system improves. In this volume the international 14C calibration curves for both the Northern and Southern Hemispheres, as well as for the ocean surface layer, have been updated to include a wealth of new data and extended to 55,000 cal BP. Based on tree rings, IntCal20 now extends as a fully atmospheric record to ca. 13,900 cal BP. For the older part of the timescale, IntCal20 comprises statistically integrated evidence from floating tree-ring chronologies, lacustrine and marine sediments, speleothems, and corals. We utilized improved evaluation of the timescales and location variable 14C offsets from the atmosphere (reservoir age, dead carbon fraction) for each dataset. New statistical methods have refined the structure of the calibration curves while maintaining a robust treatment of uncertainties in the 14C ages, the calendar ages and other corrections. The inclusion of modeled marine reservoir ages derived from a three-dimensional ocean circulation model has allowed us to apply more appropriate reservoir corrections to the marine 14C data rather than the previous use of constant regional offsets from the atmosphere. Here we provide an overview of the new and revised datasets and the associated methods used for the construction of the IntCal20 curve and explore potential regional offsets for tree-ring data. We discuss the main differences with respect to the previous calibration curve, IntCal13, and some of the implications for archaeology and geosciences ranging from the recent past to the time of the extinction of the Neanderthals.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-01-08
    Description: The concentration of radiocarbon (14C) differs between ocean and atmosphere. Radiocarbon determinations from samples which obtained their 14C in the marine environment therefore need a marine-specific calibration curve and cannot be calibrated directly against the atmospheric-based IntCal20 curve. This paper presents Marine20, an update to the internationally agreed marine radiocarbon age calibration curve that provides a non-polar global-average marine record of radiocarbon from 0–55 cal kBP and serves as a baseline for regional oceanic variation. Marine20 is intended for calibration of marine radiocarbon samples from non-polar regions; it is not suitable for calibration in polar regions where variability in sea ice extent, ocean upwelling and air-sea gas exchange may have caused larger changes to concentrations of marine radiocarbon. The Marine20 curve is based upon 500 simulations with an ocean/atmosphere/biosphere box-model of the global carbon cycle that has been forced by posterior realizations of our Northern Hemispheric atmospheric IntCal20 14C curve and reconstructed changes in CO2 obtained from ice core data. These forcings enable us to incorporate carbon cycle dynamics and temporal changes in the atmospheric 14C level. The box-model simulations of the global-average marine radiocarbon reservoir age are similar to those of a more complex three-dimensional ocean general circulation model. However, simplicity and speed of the box model allow us to use a Monte Carlo approach to rigorously propagate the uncertainty in both the historic concentration of atmospheric 14C and other key parameters of the carbon cycle through to our final Marine20 calibration curve. This robust propagation of uncertainty is fundamental to providing reliable precision for the radiocarbon age calibration of marine based samples. We make a first step towards deconvolving the contributions of different processes to the total uncertainty; discuss the main differences of Marine20 from the previous age calibration curve Marine13; and identify the limitations of our approach together with key areas for further work. The updated values for ΔR, the regional marine radiocarbon reservoir age corrections required to calibrate against Marine20, can be found at the data base http://calib.org/marine/.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...