ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 03.02. Hydrology  (1)
  • Mt. Vesuvius  (1)
  • Springer Nature  (2)
  • American Meteorological Society
  • Blackwell Publishing Ltd
  • Molecular Diversity Preservation International (MDPI)
  • 2020-2022  (2)
  • 1960-1964
Collection
Publisher
Years
  • 2020-2022  (2)
  • 1960-1964
Year
  • 1
    Publication Date: 2021-01-15
    Description: We reconstruct the composite dynamics of Mt. Vesuvius volcano in the period 2012–2019 from the study of ground deformation, seismicity, and geofluid (groundwater and fumarolic fluids) circulation and recognize complex spatio-temporal variations in these observables at medium (years) and short (months) time-scales. We interpret the observed patterns as the combined effect of structural changes affecting the volcanic edifice and variations of the dynamics of the hydrothermal system. In particular, we identify a change in the activity state of Mt. Vesuvius. After the activity reached minimum levels in 2014, the centroid of the surface manifestations migrated towards the SE. Episodic variations of co-seismic and aseismic deformation and fluid release, if analysed separately, would likely have been interpreted as pseudo-random oscillations of the background geophysical and geochemical signals. When organised in a comprehensive, multiparametric fashion, they shed light on the evolution of the volcano in 4D (x,y,z, time) space. These inferences play a crucial role in the formulation of civil protection scenarios for Mt. Vesuvius, a high risk, densely urbanized volcanic area which has never experienced unrest episodes in the modern era of instrumental volcanology.
    Description: Published
    Description: 965
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: recent dynamics ; Mt. Vesuvius ; investigations ; ground deformation ; seismicity ; geofluid circulation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-09-22
    Description: The Italian Apennines are among the most important sources of freshwater for several Italian regions. With evidences of deep CO2-rich fluids intruding into aquifers in the nearby central-southern Apennines, a thorough investigation into the geochemistry of groundwater became critical to ensure the water quality in the area. Here, we show the main hydrogeochemical processes occurring in the Matese Massif (MM) aquifer through the investigation of 98 water samples collected from springs and water wells. All waters were classified as HCO3 type with Ca dominance (from 50% up to 97%) and variable amount of Mg (from 1% up to 49%). A multivariate statistical approach through the application of the factor analysis (FA) highlighted three main hydrogeochemical processes: (i) water-carbonate rock interactions mostly enhanced in peripheral areas of the MM by CO2 deep degassing; (ii) addition of NaCl-rich components linked to recharging process and to water mixing processes of the groundwater with a thermal component relatively rich in Cl, Na, and CO2; (iii) anthropogenic activities influencing groundwater composition at the foothills of MM. Furthermore, the first detailed TDIC, pCO2, and δ13C-TDIC distribution maps of the MM area have been created, which track chemical and isotopic anomalies in several peripheral areas (Pratella, Ailano, and Telese) throughout the region. These maps systematically highlight that the greater the amount of dissolved carbon occurs the heavier the C isotope enrichment, especially in the peripheral areas. Conversely, spring waters emerging at higher altitudes within MM are only slightly mineralized and associated with δ13C-TDIC values mainly characterized by recharging processes with the addition of biogenic carbon during the infiltration process through the soil.
    Description: Published
    Description: 46614–46626
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: 2IT. Laboratori analitici e sperimentali
    Description: JCR Journal
    Keywords: CO2 degassing; Factor analysis; Mineral springs; Total dissolved inorganic carbon; δ13C-TDIC ; 03.02. Hydrology ; 04.04. Geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...