ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • XAS  (2)
  • similarity measures  (2)
  • International Union of Crystallography  (4)
  • Blackwell Publishing Ltd
  • 2020-2022  (4)
  • 1980-1984
  • 1965-1969
  • 1925-1929
Collection
Publisher
Years
  • 2020-2022  (4)
  • 1980-1984
  • 1965-1969
  • 1925-1929
  • 2020-2024  (1)
Year
  • 1
    Publication Date: 2021-06-30
    Description: ROBL‐II provides four different experimental stations to investigate actinide and other alpha‐ and beta‐emitting radionuclides at the new EBS storage ring of ESRF within an energy range of 3 to 35 keV. The XAFS station consists of a highly automatized, high sample throughput installation in a glovebox, to measure EXAFS and conventional XANES of samples routinely at temperatures down to 10 K, and with a detection limit in the sub‐p.p.m. range. The XES station with its five bent‐crystal analyzer, Johann‐type setup with Rowland circles of 1.0 and 0.5 m radii provides high‐energy resolution fluorescence detection (HERFD) for XANES, XES, and RIXS measurements, covering both actinide L and M edges together with other elements accessible in the 3 to 20 keV energy range. The six‐circle heavy duty goniometer of XRD‐1 is equipped for both high‐resolution powder diffraction as well as surface‐sensitive CTR and RAXR techniques. Single crystal diffraction, powder diffraction with high temporal resolution, as well as X‐ray tomography experiments can be performed at a Pilatus 2M detector stage (XRD‐2). Elaborate radioprotection features enable a safe and easy exchange of samples between the four different stations to allow the combination of several methods for an unprecedented level of information on radioactive samples for both fundamental and applied actinide and environmental research.
    Description: ROBL‐II at ESRF provides four experimental stations to investigate actinides with X‐ray absorption and emission spectroscopy, and with surface, high‐resolution powder, and single‐crystal X‐ray diffractometry.
    Keywords: 549 ; actinides ; EXAFS ; XANES ; HERFD‐XANES ; XAS ; XES ; RIXS ; XRD ; CTR ; RAXR ; surface diffraction
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    International Union of Crystallography | 5 Abbey Square, Chester, Cheshire CH1 2HU, England
    Publication Date: 2021-06-20
    Description: An approach for the comparison of pair distribution functions (PDFs) has been developed using a similarity measure based on cross‐correlation functions. The PDF is very sensitive to changes in the local structure, i.e. small deviations in the structure can cause large signal shifts and significant discrepancies between the PDFs. Therefore, a comparison based on pointwise differences (e.g. R values and difference curves) may lead to the assumption that the investigated PDFs as well as the corresponding structural models are not in agreement at all, whereas a careful visual inspection of the investigated structural models and corresponding PDFs may reveal a relatively good match. To quantify the agreement of different PDFs for those cases an alternative approach is introduced: the similarity measure based on cross‐correlation functions. In this paper, the power of this application of the similarity measure to the analysis of PDFs is highlighted. The similarity measure is compared with the classical Rwp values as representative of the comparison based on pointwise differences as well as with the Pearson product‐moment correlation coefficient, using polymorph IV of barbituric acid as an example.
    Description: A novel approach to the quantification of the agreement between pair distribution functions by a similarity measure based on cross‐correlation functions is introduced and evaluated. image
    Keywords: 548 ; pair distribution functions ; similarity measures ; total scattering techniques ; cross‐correlation functions ; R values
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-06-26
    Description: X‐SPEC is a high‐flux spectroscopy beamline at the KIT (Karlsruhe Institute of Technology) Synchrotron for electron and X‐ray spectroscopy featuring a wide photon energy range. The beamline is equipped with a permanent magnet undulator with two magnetic structures of different period lengths, a focusing variable‐line‐space plane‐grating monochromator, a double‐crystal monochromator and three Kirkpatrick–Baez mirror pairs. By selectively moving these elements in or out of the beam, X‐SPEC is capable of covering an energy range from 70 eV up to 15 keV. The flux of the beamline is maximized by optimizing the magnetic design of the undulator, minimizing the number of optical elements and optimizing their parameters. The beam can be focused into two experimental stations while maintaining the same spot position throughout the entire energy range. The first experimental station is optimized for measuring solid samples under ultra‐high‐vacuum conditions, while the second experimental station allows in situ and operando studies under ambient conditions. Measurement techniques include X‐ray absorption spectroscopy (XAS), extended X‐ray absorption fine structure (EXAFS), photoelectron spectroscopy (PES) and hard X‐ray PES (HAXPES), as well as X‐ray emission spectroscopy (XES) and resonant inelastic X‐ray scattering (RIXS).
    Description: X‐SPEC is a high‐flux undulator beamline for electron and X‐ray spectroscopy with an energy range from 70 eV to 15 keV. It offers X‐ray absorption spectroscopy (XAS), extended X‐ray absorption fine structure (EXAFS), photoelectron spectroscopy (PES) and hard X‐ray PES (HAXPES), as well as X‐ray emission spectroscopy (XES) and resonant inelastic X‐ray scattering (RIXS) for in vacuo, in situ and operando sample environments. image
    Keywords: 548 ; undulator beamline ; soft X‐ray ; tender X‐ray ; hard X‐ray ; in situ ; operando ; HAXPES ; RIXS ; XAS ; XES
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    International Union of Crystallography | 5 Abbey Square, Chester, Cheshire CH1 2HU, England
    Publication Date: 2021-06-26
    Description: A method for the ab initio crystal structure determination of organic compounds by a fit to the pair distribution function (PDF), without prior knowledge of lattice parameters and space group, has been developed. The method is called `PDF‐Global‐Fit' and is implemented by extension of the program FIDEL (fit with deviating lattice parameters). The structure solution is based on a global optimization approach starting from random structural models in selected space groups. No prior indexing of the powder data is needed. The new method requires only the molecular geometry and a carefully determined PDF. The generated random structures are compared with the experimental PDF and ranked by a similarity measure based on cross‐correlation functions. The most promising structure candidates are fitted to the experimental PDF data using a restricted simulated annealing structure solution approach within the program TOPAS, followed by a structure refinement against the PDF to identify the correct crystal structure. With the PDF‐Global‐Fit it is possible to determine the local structure of crystalline and disordered organic materials, as well as to determine the local structure of unindexable powder patterns, such as nanocrystalline samples, by a fit to the PDF. The success of the method is demonstrated using barbituric acid as an example. The crystal structure of barbituric acid form IV solved and refined by the PDF‐Global‐Fit is in excellent agreement with the published crystal structure data.
    Keywords: 548 ; pair distribution function analysis ; structure determination ; total scattering technique ; similarity measures ; PDF‐Global‐Fit
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...