ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (447)
  • Annual Reviews  (447)
  • 2020-2022  (68)
  • 2000-2004  (379)
  • 1950-1954
  • Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics  (447)
Collection
  • Articles  (447)
Years
Year
Journal
Topic
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 33 (2003), S. 557-579 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Combinatorial methods provide a means for accelerating the discovery of fuel cell catalysts. The first example of parallel fuel cell catalysts screening was an indirect method that used fluorescent chemosensors to detect changes in pH in proximity to electrocatalyst spots. Serial direct electrochemical methods have been developed that use voltammetry, chronoamperometry, and scanning electrochemical microscopy. An array fuel cell screens catalysts simultaneously, using high-performance fuel cell components. Heuristic models based on mechanistic and spectroscopic studies provide guidance for library development, and detailed studies of discovered catalysts can help to refine these models. The remaining challenges are the development of high throughput synthetic methods that can enable the use of discovery level and focus level screening. Until these synthetic methods are developed, a greater emphasis should be placed on smaller libraries with design of experiment strategies leveraged with informatics and data mining.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 33 (2003), S. 503-555 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The past 10 years have witnessed a tremendous acceleration in research devoted to non-fluorinated polymer membranes, both as competitive alternatives to commercial perfluorosulfonic acid membranes operating in the same temperature range and with the objective of extending the range of operation of polymer fuel cells toward those more generally occupied by phosphoric acid fuel cells. Important requirements are adequate membrane mechanical strength at levels of functionalization (generally sulfonation) and hydration allowing high proton conductivity, and stability in the aggressive environment of a working fuel cell, in particular thermohydrolytic and chemical stability. This review provides an overview of progress made in the development of proton-conducting hydrocarbon and heterocyclic-based polymers for proton exchange and direct methanol fuel cells and describes the various approaches made to polymer modification/synthesis and salient properties of the materials formed, including those relating to proton transport and proton conductivity, e.g., water diffusion and electro-osmotic drag. The microstructure, deduced from small angle X-ray and neutron diffraction measurements of representative non-fluorinated polymers is compared with that of perfluorosulfonic acid membranes. Different degradation mechanisms and aging processes that can result in chemical and morphological alteration are considered, and recent characterization of membrane-electrode assemblies (MEAs) in direct methanol and hydrogen-air (oxygen) fuel cells completes this review of the state of the art. While several types of non-fluorinated polymer membrane have demonstrated lifetimes of 500-4000 h, only a limited number of systems exist that hold promise for long-term operation above 100oC.1
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 34 (2004), S. 83-122 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Semiconductor nanowires and nanotubes exhibit novel electronic and optical properties owing to their unique structural one-dimensionality and possible quantum confinement effects in two dimensions. With a broad selection of compositions and band structures, these one-dimensional semiconductor nanostructures are considered to be the critical components in a wide range of potential nanoscale device applications. To fully exploit these one-dimensional nanostructures, current research has focused on rational synthetic control of one-dimensional nanoscale building blocks, novel properties characterization and device fabrication based on nanowire building blocks, and integration of nanowire elements into complex functional architectures. Significant progress has been made in a few short years. This review highlights the recent advances in the field, using work from this laboratory for illustration. The understanding of general nanocrystal growth mechanisms serves as the foundation for the rational synthesis of semiconductor heterostructures in one dimension. Availability of these high-quality semiconductor nanostructures allows systematic structural-property correlation investigations, particularly of a size- and dimensionality-controlled nature. Novel properties including nanowire microcavity lasing, phonon transport, interfacial stability and chemical sensing are surveyed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 34 (2004), S. 1-40 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Highly strained semiconductors grow epitaxially on mismatched substrates in the Stranski-Krastanow growth mode, wherein islands are formed after a few monolayers of layer-by-layer growth. Elastic relaxation on the facet edges, renormalization of the surface energy of the facets, and interaction between neighboring islands via the substrate are the driving forces for self-organized growth. The dimensions of the defect-free islands are of the order lambaB, the de Broglie wavelength, and provide three-dimensional quantum confinement of carriers. Self-organized In(Ga)As/GaAs quantum dots, or quantum boxes, are grown by molecular beam expitaxy (MBE) or metal-organic vapor phase epitaxy (MOVPE) on GaAs, InP, and other substrates and are being incorporated in microelectronic and opto-electronic devices. The use of strain to produce self-organized quantum dots has now become a well-accepted approach and is widely used in III-V semiconductors and other material systems. Much progress has been made in the area of growth, where focus has been on size control, and on optical characterization, where the goal has been the application to lasers and detectors. The unique carrier dynamics in the dots, characterized by femtosecond pump-probe spectroscopy, has led to novel device applications. This article reviews the growth and electronic properties of InGaAs quantum dots and the characteristics of interband and intersublevel lasers and detectors and modulation devices.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 34 (2004), S. 123-150 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Carbon nanotubes functionalized with biological molecules (such as protein peptides and nucleic acids) show great potential for application in bioengineering and nanotechnology. Fundamental understanding, description, and regulation of such bio-nano-systems will ultimately lead to a new generation of integrated systems that combine unique properties of the carbon nanotube (CNT) with biological recognition capabilities. In this review, we describe recent advances in understanding the interactions between deoxyribonucleic acids (DNA) and CNT, as well as relevant simulation techniques. We also review progress in simulating DNA noncovalent interactions with CNTs in an aqueous environment. Molecular dynamics simulations indicate that DNA molecules may be encapsulated inside or wrap around CNT owing to van der Waals attraction between DNA and CNT. We focus on the dynamics and energetics of DNA encapsulation inside nanotubes and discuss the mechanism of encapsulation and the effects of nanotube size, nanotube end-group, DNA base sequence, solvent temperature and pressure on the encapsulation process. Finally, we discuss the likely impact of DNA encapsulation on bioengineering and nanotechnology, as well as other potential applications.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 34 (2004), S. 279-314 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Modeling and simulation are becoming increasingly accepted components of materials research. In this review we discuss application of modeling and simulation in the developing field of biomaterials. To restrict the discussion somewhat, we focus primarily on the structure and properties of biomaterials and do not discuss biochemical or biomedical applications. We start with a discussion of how atomistic-level simulation can be used to study molecules and collections of molecules. We then focus on mesoscale simulations of structure and properties, followed by a brief review of continuum-scale approaches. We end with some thoughts on the future of modeling and simulation in biomaterials applications.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 32 (2000), S. 137-164 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract The active control of sound waves has become an extraordinarily large and vigorous area of academic research and technological development. In this paper we describe the physical principles underlying the control of sound and review their application in a wide range of contexts. One scenario involves the control of noise from a primary source by the introduction of secondary sources, and this technique is described for fields in ducts, in free space, in enclosures (with particular reference to aircraft cabins), and for turbomachinery. A second scenario involves the use of the active control of sound to eliminate large-scale oscillations in more complicated flows, in which part of an unstable feedback cycle is mediated via acoustic waves. Successful applications of this idea include the control of combustion instabilities and compressor surge.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 32 (2000), S. 165-202 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract This article reviews some aspects of the roles that laboratory experiments have played in the study of orographic effects in the Earth's atmosphere and oceans. The review focuses on, but is not restricted to, physical systems for which the effects of both background stratification and rotation are important. In the past, such laboratory studies have been largely decoupled from attempts to make quantitative comparisons with the results of numerical-model studies or observations from field programs. Rather, they have been used mostly in the important task of better understanding the physics of rotating and stratified flows. Furthermore, most laboratory experiments concerned with the effects of orography on either homogeneous or stratified rotating fluids have considered laminar flows, whereas their counterpart flows in the atmosphere and ocean are turbulent. We argue that laboratory investigations are likely to be more useful in addressing critical environmental problems if the studies are more closely allied with numerical-modeling efforts. The latter, in turn, should be tied to field projects, with the overall objective of improving our ability to predict the behavior of natural systems. In this same spirit, we conclude that far more attention should be given to the laboratory simulation of the turbulent characteristics of natural flows. The availability of rapidly developing technology to acquire and analyze laboratory data provides the capability necessary to support the increasingly important roles that laboratory experiments can play in understanding and predicting the behavior of our natural environment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 32 (2000), S. 241-274 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract We concentrate on the rich effects that surface tension has on free and forced surface waves for linear, nonlinear, and especially strongly nonlinear waves close to or at breaking or their limiting form. These effects are discussed in the context of standing gravity and gravity-capillary waves, Faraday waves, and parasitic capillary waves. Focus is primarily on post-1989 research. Regarding standing waves, new waveforms and the large effect that small capillarity can have are considered. Faraday waves are discussed principally with regard to viscous effects, hysteresis, and limit cycles; nonlinear waveforms of low mode numbers; contact-line effects and surfactants; breaking and subharmonics; and drop ejection. Pattern formation and chaotic and nonlinear dynamics of Faraday waves are mentioned only briefly. Gravity and gravity-capillary wave generation of parasitic capillaries and dissipation are considered at length. We conclude with our view on the direction of future research in these areas.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 32 (2000), S. 203-240 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Passive scalar behavior is important in turbulent mixing, combustion, and pollution and provides impetus for the study of turbulence itself. The conceptual framework of the subject, strongly influenced by the Kolmogorov cascade phenomenology, is undergoing a drastic reinterpretation as empirical evidence shows that local isotropy, both at the inertial and dissipation scales, is violated. New results of the complex morphology of the scalar field are reviewed, and they are related to the intermittency problem. Recent work on other aspects of passive scalar behavior-its spectrum, probability density function, flux, and variance-is also addressed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 32 (2000), S. 573-611 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract A vapor explosion results from the rapid and intense heat transfer that may follow contact between a hot liquid and a cold, more volatile one. Because it can happen during severe-accident sequences of a nuclear power plan, that is, when a large part of the core is molten, vapor explosions have been widely studied. The different sequences of a vapor explosion are presented, including premixing, triggering, propagation, and expansion. Typical experimental results are also analyzed to understand the involved physics. Then the different physics involved in the sequences are addressed, as well as the present experimental program.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 32 (2000), S. 779-811 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract In the framework of the classical gas dynamics, no steady flow is induced in a gas without an external force, such as gravity, by the effect of a temperature field. In a rarefied gas, on the other hand, the temperature field of a gas (often in combination with a solid boundary) plays an important role in inducing a steady flow. In the present article, we introduce various kinds of flows induced by the temperature effect and discuss their physical mechanisms. These flows vanish in the continuum limit (the limit where the mean free path of the gas molecules tends to zero), but it has been found recently that they, strangely, affect the behavior of a gas in this limit. This interesting effect, called a ghost effect, is also discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 33 (2001), S. 67-92 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Fluid mechanics research related to fire is reviewed with a focus on canonical flows, multiphysics coupling aspects, and experimental and numerical techniques. Fire is a low-speed, chemically reacting flow in which buoyancy plays an important role. Fire research has focused on two canonical flows, the reacting boundary layer and the reacting free plume. There is rich, multilateral, bidirectional coupling among fluid mechanics and scalar transport, combustion, and radiation. There is only a limited experimental fluid mechanics database for fire owing to measurement difficulties in the harsh environment and to the focus within the fire community on thermal/chemical consequences. Increasingly, computational fluid dynamics techniques are being used to provide engineering guidance on thermal/chemical consequences and to study fire phenomenology.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 33 (2001), S. 207-230 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Models are considered for rotating flows over sills, through straits, and along coasts where the variation in geometry in the flow direction is slow but otherwise unrestricted. In addition to the (rotation-modified) free surface waves of nonrotating open channel hydraulics, with their predominantly vertical signature, slow Rossby or vorticity waves are possible when the background potential vorticity varies. In all but the simplest cases the conservation of energy and momentum fluxes is no longer sufficient to determine the flow behavior. Various additional modeling assumptions are reviewed, and time-dependent finite-amplitude and weakly nonlinear theories that include long Rossby wave dynamics are summarized.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 33 (2001), S. 289-317 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract This review begins with the classical foundations of relative dispersion in Kolmogorov's similarity scaling. Analysis of the special cases of isotropic and homogeneous scalar fields is then used to establish most simply the connection with turbulent mixing. The importance of the two-particle acceleration covariance in relative dispersion is demonstrated from the kinematics of the motion of particle-pairs. A summary of the development of two-particle Lagrangian stochastic models is given, with emphasis on the assumptions and constraints involved, and on predictions of the scalar variance field for inhomogeneous sources. Two-point closures and kinematic simulation are also reviewed in the context of their prediction of the Richardson constant and other fundamental constants. In the absence of reliable field data, direct numerical simulations and laboratory measurements seem most likely to provide suitable data with which to test the assumptions and predictions of these theories.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 34 (2002), S. 37-49 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract David Crighton, a greatly admired figure in fluid mechanics, Head of the Department of Applied Mathematics and Theoretical Physics at Cambridge, and Master of Jesus College, Cambridge, died at the peak of his career. He had made important contributions to the theory of waves generated by unsteady flow. Crighton's work was always characterized by the application of rigorous mathematical approximations to fluid mechanical idealizations of practically relevant problems. At the time of his death, he was certainly the most influential British applied mathematical figure, and his former collaborators and students form a strong school that continues his special style of mathematical application. Rigorous analysis of well-posed aeroacoustical problems was transformed by David Crighton.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 34 (2002), S. 143-175 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Cavitation in vortical structures is a common, albeit complex, problem in engineering applications. Cavitating vortical structures can be found on the blade surfaces, in the clearance passages, and at the hubs of various types of turbomachinery. Cavitating microvortices at the trailing edge of attached sheet cavitation can be highly erosive. Cavitating hub vortices in the draft tubes of hydroturbines can cause major surges and power swings. There is also mounting evidence that vortex cavitation is a dominant factor in the inception process in a broad range of turbulent flows. Most research has focused on the inception process, with limited attention paid to developed vortex cavitation. Wave-like disturbances on the surfaces of vapor cores are an important feature. Vortex core instabilities in microvortices are found to be important factors in the erosion mechanisms associated with sheet/cloud cavitation. Under certain circumstances, intense sound at discrete frequencies can result from a coupling between tip vortex disturbances and oscillating sheet cavitation. Vortex breakdown phenomena that have some commonalities are also noted, as are some differences with vortex breakdown in fully wetted flow. Simple vortex models can sometimes be used to describe the cavitation process in complex turbulent flows such as bluff body wakes and in plug valves. Although a vortex model for cavitation in jets does not exist, the mechanism of inception appears to be related to the process of vortex pairing. The pairing process can produce negative peaks in pressure that can exceed the rms value by a factor of ten, sometimes exceeding the dynamic pressure by a factor of two. A new and important issue is that cavitation is not only induced in vortical structures but is also a mechanism for vorticity generation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 34 (2002), S. 177-210 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Microstructure in an immiscible polymer blend consists of the size, shape, and orientation of the phases. Blends exhibit many interesting behaviors, including enhanced elasticity at small strains, drop-size hysteresis, enhanced shear thinning, and stress relaxation curves whose shapes are sensitive to deformation history. These behaviors are directly related to changes in the microstructure, which result from phase deformation, coalescence, retraction, and different types of breakup. These phenomena are reviewed, together with models that describe them. Rheological measurements can probe the microstructure because microstructure contributes directly to stress through interfacial tension. Rheo-optical experiments also provide important insights. Droplet theories explain most of the phenomena for Newtonian phases at low concentrations. Behaviors at high volume fractions or with strongly non-Newtonian phases are less well understood.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 34 (2002), S. 417-444 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Recent advances in the computational modeling of molecular conformational and orientational effects in the flow of viscoelastic fluids are described. These advances involve the coupling of molecular models for the underlying microstructure of macromolecules with the macroscopic equations of change. The kinetic theory for polymeric liquids is described along with the most useful micromechanical models for computing the fluid flow of polymeric liquids. Three levels of description are covered for the computation of molecular orientation effects: methods for molecular models for which closed-form, continuum-like evolution equations for average quantities describing molecular conformations can be obtained, hybrid methods that involve coupling direct solution of the Fokker-Planck equation describing the distribution function for molecular orientations with the equations of change, and hybrid methods that couple stochastic simulations of individual molecule trajectories with the macroscopic equations of change. Illustrative results for rheometric flows (flows with homogeneous, fixed kinematics) and complex flows are given.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 34 (2002), S. 531-558 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract The El Nino variability in the equatorial Tropical Pacific is characterized by sea-surface temperature anomalies and associated changes in the atmospheric circulation. Through an enormous monitoring effort over the last decades, the relevant time scales and spatial patterns are fairly well documented. In the meantime, a hierarchy of models has been developed to understand the physics of this phenomenon and to make predictions of future variability. In this review, the robust and relevant details of the observations, the fluid mechanical "building blocks," the theory of the deterministic part of the variability, and the impact of small-scale ("noise") and remote ("external") processes are evaluated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 35 (2003), S. 1-10 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 35 (2003), S. 45-62 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Drag reduction in wall-bounded flows can be achieved by transverse motions imposed by passive means, e.g., riblets, or by external forcing, such as wall oscillation or transverse traveling-wave excitation. In this article, we review possible physical mechanisms responsible for turbulent drag reduction and corresponding near-wall flow modification.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 35 (2003), S. 89-111 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract In this review we describe the aerodynamic problems that must be addressed in order to design a successful small aerial vehicle. The effects of Reynolds number and aspect ratio (AR) on the design and performance of fixed-wing vehicles are described. The boundary-layer behavior on airfoils is especially important in the design of vehicles in this flight regime. The results of a number of experimental boundary-layer studies, including the influence of laminar separation bubbles, are discussed. Several examples of small unmanned aerial vehicles (UAVs) in this regime are described. Also, a brief survey of analytical models for oscillating and flapping-wing propulsion is presented. These range from the earliest examples where quasi-steady, attached flow is assumed, to those that account for the unsteady shed vortex wake as well as flow separation and aeroelastic behavior of a flapping wing. Experiments that complemented the analysis and led to the design of a successful ornithopter are also described.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 35 (2003), S. 135-167 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract The issue of the physical mechanism(s) that control the efficiency with which the density field in stably stratified fluid is mixed by turbulent processes has remained enigmatic. Similarly enigmatic has been an explanation of the numerical value of ~0.2, which is observed to characterize this efficiency experimentally. We review recent work on the turbulence transition in stratified parallel flows that demonstrates that this value is not only numerically predictable but also that it is expected to be a nonmonotonic function of the Richardson number that characterizes preturbulent stratification strength. This value of the mixing efficiency appears to be characteristic of the late-time behavior of the turbulent flow that develops after an initially laminar shear flow has undergone the transition to turbulence through an intermediate instability of Kelvin-Helmholtz type.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 35 (2003), S. 373-412 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Recent small-scale turbulence observations allow the mixing regimes in lakes, reservoirs, and other enclosed basins to be categorized into the turbulent surface and bottom boundary layers as well as the comparably quiet interior. The surface layer consists of an energetic wave-affected thin zone at the very top and a law-of-the-wall layer right below, where the classical logarithmic-layer characteristic applies on average. Short-term current and dissipation profiles, however, deviate strongly from any steady state. In contrast, the quasi-steady bottom boundary layer behaves almost perfectly as a logarithmic layer, although periodic seiching modifies the structure in the details. The interior stratified turbulence is extremely weak, even though much of the mechanical energy is contained in baroclinic basin-scale seiching and Kelvin waves or inertial currents (large lakes). The transformation of large-scale motions to turbulence occurs mainly in the bottom boundary and not in the interior, where the local shear remains weak and the Richardson numbers are generally large.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 35 (2003), S. 469-496 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Increasing urbanization and concern about sustainability and quality of life issues have produced considerable interest in flow and dispersion in urban areas. We address this subject at four scales: regional, city, neighborhood, and street. The flow is one over and through a complex array of structures. Most of the local fluid mechanical processes are understood; how these combine and what is the most appropriate framework to study and quantify the result is less clear. Extensive and structured experimental databases have been compiled recently in several laboratories. A number of major field experiments in urban areas have been completed very recently and more are planned. These have aided understanding as well as model development and evaluation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 35 (2003), S. 295-315 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract It is classically assumed that the far field of a round turbulent jet discharging into quiescent fluid has a unique behavior characterized only by its momentum flux. However, there is now considerable evidence that different discharge conditions at the jet nozzle exit can give rise to very different far-field flows. Perhaps the most striking examples of these are the bifurcating and blooming jets produced by appropriate combinations of controlled axial and circumferential excitations at the nozzle exit. With the right excitations, a jet can be made to divide into two separate jets (bifurcating jet), each of which carries half the axial momentum and spreads in a manner similar to a single jet. Trifurcating jets can also be produced. Other excitations can produce blooming jets, in which the jet explodes into a shower of vortex rings, producing a far-field flow that is quite unlike a normal unexcited jet. Bifurcating and blooming jets exhibit much greater mixing than normal jets, suggesting possible applications in flow control. This article summarizes our work on bifurcating and blooming jets, which began with our discovery of them in the early 1980s and continued through the mid- 1990s. One of us (D.E.P.) continued exploration of flow control using excited jets, first at the McDonnell Douglas Corporation, and more recently at the Georgia Institute of Technology. The key to flow control is the manipulation of the large vortical structures in the near field of the jet. Ultimately this work, and that of others, led to full-scale testing of jet engine exhaust mixing control. There it was shown that the jet temperature downstream of the engine can be very significantly reduced by application of well-designed and easily implemented excitation at the engine discharge, thereby solving problems encountered during ground operations. Related jet control work by other investigators is included in this review.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 35 (2003), S. 413-440 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract The recent progress in three-dimensional boundary-layer stability and transition is reviewed. The material focuses on the crossflow instability that leads to transition on swept wings and rotating disks. Following a brief overview of instability mechanisms and the crossflow problem, a summary of the important findings of the 1990s is given.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 31 (2001), S. 1-23 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The synthesis of the two currently used superhard materials, diamond and cubic boron nitride, is briefly described with indications of the factors influencing the quality of the crystals obtained. The physics of hardness is discussed and the importance of covalent bonding and fixed atomic positions in the crystal structure, which determine high hardness values, is outlined. The materials investigated to date are described and new potentially superhard materials are presented. No material that is thermodynamically stable under ambient conditions and composed of light (small) atoms will have a hardness greater than that of diamond. Materials with hardness values similar to that of cubic boron nitride (cBN) can be obtained. However, increasing the capabilities of the high-pressure devices could lead to the production of better quality cBN compacts without binders.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 31 (2001), S. 139-169 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract A review of the field of photorefractive liquid crystals is presented. The first reports of photorefractive liquid crystals occurred in 1994, and the performance of these materials has dramatically improved since that time. Liquid crystalline materials have proven to be highly versatile, showing photorefractive character under a wide range of conditions. For example, new composites based on high-molar-mass liquid crystals are now capable of forming volume (Bragg) gratings with high photorefractive gain coefficients of 〉600 cm-1. Formation times for photorefractive Bragg gratings of 15 ms with applied fields of only 0.1 V/mum have been reported. Low-molar-mass liquid crystals continue to be developed and show their largest photorefractive character in the thin (Raman-Nath) grating regime. Composites of nonmesogenic polymers and liquid crystals are also discussed. The experiments and theoretical work that have been used to characterize these materials are reviewed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 31 (2001), S. 183-201 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The field of biomaterials has recently been focused on the design of intelligent materials. Toward this goal, materials have been developed that can provide specific bioactive signals to control the biological environment around them during the process of materials integration and wound healing. In addition, materials have been developed that can respond to changes in their environment, such as a change in pH or cell-associated enzymatic activity. In designing such novel biomaterials, researchers have sought not merely to create bio-inert materials, but rather materials that can respond to the cellular environment around them to improve device integration and tissue regeneration.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 31 (2001), S. 323-355 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract A two-part review of research concerning block copolymer thin films is presented. The first section summarizes experimental and theoretical studies of the fundamental physics of these systems, concentrating upon the forces that govern film morphology. The role of film thickness and surface energetics on the morphology of compositionally symmetric, amorphous diblock copolymer films is emphasized, including considerations of boundary condition symmetry, so-called hybrid structures, and surface chemical expression. Discussions of compositionally asymmetric systems and emerging research areas, e.g., liquid-crystalline and A-B-C triblock systems, are also included. In the second section, technological applications of block copolymer films, e.g., as lithographic masks and photonic materials, are considered. Particular attention is paid to means by which microphase domain order and orientation can be controlled, including exploitation of thickness and surface effects, the application of external fields, and the use of patterned substrates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 32 (2002), S. 1-37 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Multiferroic magnetoelectrics are materials that are both ferromagnetic and ferroelectric in the same phase. As a result, they have a spontaneous magnetization that can be switched by an applied magnetic field and a spontaneous polarization that can be switched by an applied electric field. In this paper we show that density functional theory has been invaluable both in explaining the properties of known magnetically ordered ferroelectric materials, and in predicting the occurrence of new ones. Density functional calculations have shown that, in general, the transition metal d electrons essential for magnetism reduce the tendency for off-center ferroelectric distortion. Consequently, an additional electronic or structural driving force must be present for ferromagnetism and ferroelectricity to occur simultaneously.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 32 (2002), S. 271-295 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Vacancies and self-interstitial defects in silicon are here investigated by means of semi-empirical quantum molecular dynamics simulations performed within the tight-binding model. We extensively discuss the process of formation and migration of native point defects and investigate their interaction and clustering phenomena. The formation of larger stable structures is further studied by combining tight-binding and Monte Carlo simulations. Tight-binding simulation results provide a global picture for defect-induced microstructure evolution in bulk silicon. These results are consistent with state-of-the-art experimental data and elucidate many relevant atomic-scale mechanisms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 33 (2003), S. 263-288 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The use of low-energy electron microscopy (LEEM) to study reversible surface phase transitions is reviewed. Representative experiments are described that highlight the key advantages of LEEM: the ability to image surfaces in situ, at elevated temperature, with good spatial and temporal resolution. With these capabilities, the evolution of individual surface features-domains, facets, islands, steps, etc.-can be measured. Real-time and real-space imaging make LEEM a powerful tool for characterizing the thermodynamics and kinetics that govern surface phase transformations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 33 (2003), S. 233-261 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Anhydrous proton-conducting polymers usually consist of a more or less inert polymer matrix that is swollen with an appropriate proton solvent (in most cases, phosphoric acid). An outline of the different materials is provided, with a focus on PBI/H3PO4 blends that are currently most suitable for fuel cell applications. Also discussed are alternative concepts for fully polymeric materials, which establish proton conductivity as an intrinsic property using amphoteric heterocycles such as imidazole as a proton solvent. The development of some of the first polymers is described, and the fundamental relations between their material properties and conductivity are discussed. Closely related to this relatively new concept are mechanistic investigations focusing on intermolecular proton transfer and diffusion of (protonated) solvent molecules, the contributions of both transport processes to conductivity, and the dependence of these ratios on composition, charge carrier density, etc. Although the development of fully polymeric proton conductors is inseparably related to mechanistic considerations, relatively little attention has been paid to these concepts in the field of conventional membranes (hydrated ionomers, H3PO4-based materials). Consequently, their general relevance is emphasized, and according investigations are summarized to provide a more comprehensive picture of proton transport processes within proton exchange membranes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 33 (2003), S. 289-319 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The need to operate polymer electrolyte membrane (PEM) fuel cells at temperatures above 100oC, where the amount of water in the membrane is restricted, has provided much of the motivation for understanding the mechanisms of proton conduction at low degrees of hydration. Although experiments have not provided any direct information, numerous theoretical investigations have begun to provide the basis for understanding the mechanisms of proton conduction in these nano-phase-separated materials. Both the hydrated morphology and the nature of the confined water in the hydrophilic domains influence proton dissociation from the acidic sites (i.e., -SO3H), transfer to the water environment, and transport through the membrane. The following molecular processes are discussed in connection to their role in the conduction of protons in sulfonic acid-based polymer electrolyte membranes (PEMs): (a) local chemistry of the hydrophilic side chains; its effect on the dissociation of the proton and eventual stabilization (separation) of the proton in the water; (b) the presence of neighboring sulfonic acid groups on proton transfer; and (c) the effect of the distribution of the sulfonate groups on the transport of protons in the channels/pores of the membrane.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 33 (2003), S. 333-359 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The structural and chemical parameters determining the formation and mobility of protonic defects in oxides are discussed, and the paramount role of high-molar volume, coordination numbers, and symmetry are emphasized. Symmetry also relates to the structural and chemical matching of the acceptor dopant. Y-doped BaZrO3-based oxides are demonstrated to combine high stability with high proton conductivity that exceeds the conductivity of the best oxide ion conductors at temperatures below about 700oC. The unfavorably high grain boundary impedances and brittleness of ceramics have been reduced by forming solid solutions with small amounts of BaCeO3, and an initial fuel cell test has demonstrated that proton-conducting electrolytes based on Y-doped BaZrO3 provide alternatives for separator materials in solid oxide fuel cells (SOFCs). These materials have the potential to operate at lower temperatures compared with those of conventional SOFCs, and the appearance of chemical water diffusion across the electrolyte at typical operation temperatures (T = 500-800oC) allows the use of dry methane as a fuel.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 33 (2003), S. 321-331 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Recently, a number of papers about direct oxidation of methane and hydrocarbon in solid oxide fuel cells (SOFC) at relatively low temperatures (about 700oC) have been published. Even though the conversion of almost dry CH4 at 1000oC on ceramic anodes was demonstrated more than 10 years ago, the reports about high-current densities for methane oxidation at such low temperatures are indeed surprising. Several papers indicate that a catalytic effect (due to the mixed ionic and electronic conductivity) of CeO2-x is partially responsible for this effect. However, this seems to contradict previous reports, and thus this issue deserves further analysis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 33 (2003), S. 383-417 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The emphasis in this short review is to describe the materials issues involved in the development of present thermal barrier coatings and the advances necessary for the next generation, higher temperature capability coatings.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 33 (2003), S. 361-382 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Several recent experimental and numerical investigations have contributed to the improved understanding of the electrochemical mechanisms taking place at solid oxide fuel cell (SOFC) cathodes and yielded valuable information on the relationships between alterable parameters (geometry/material) and the cathodic polarization resistance. Efforts to reduce the polarization resistance in SOFCs can benefit from these results, and some important aspects of the corresponding studies are reviewed. Experimental results, particularly measurements using geometrically well-defined Sr-doped LaMnO3 (LSM) cathodes, are discussed. In regard to simulations, the different levels of sophistication used in SOFC electrode modeling studies are summarized and compared. Exemplary simulations of mixed conducting cathodes that show the capabilities and limits of different modeling levels are described.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 33 (2003), S. 419-501 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract This account reviews the discovery, synthesis, properties, and the latest research advances of carbon nanotubes developed over the past 12 years. Because of their remarkable electronic and mechanical properties, carbon nanotubes are unique and exciting. The field has been developed rapidly, and the number of publications per year is increasing almost exponentially. Various technological applications are likely to arise using nanotubes for fabrication of flat panel displays, gas storage devices, toxic gas sensors, Li+ batteries, robust and lightweight composites, conducting paints, electronic nanodevices, etc. Further experimental and theoretical research is still necessary so that novel technologies will become a reality in the early twenty-first century.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 34 (2004), S. 247-278 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The unusual structure and properties of carbon nanotubes are presented, with particular reference to single-wall nanotubes (SWNTs) and nanotube properties that differ from those of their bulk counterparts. The atomic structure; electronic structure; and vibrational, optical, mechanical, and thermal properties are discussed, with reference made to nanotube junctions, nanotube filling, and double-wall nanotubes (DWNTs). Special attention is given to resonance Raman spectroscopy at the single nanotube level. The status of current research in this field is assessed and opportunities for future research are identified.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 34 (2004), S. 315-337 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Over the past two decades, advances in biophysical instrumentation have enabled the study of molecular motors at the single molecule level. These studies have inspired the creation of biological/inorganic systems powered by such motors in an attempt to exploit their unique sizes, speeds, functions, and energy utilization capabilities. We give a brief overview of the state-of-the-art of biological and synthetic molecular motors and discuss some initial efforts to exploit their function in engineered structures. We also briefly discuss the construction of devices powered by organized and coordinated arrays of millions of motors in which the growth of cardiac muscle tissue over a microfabricated silicon "skeleton" is directed and controlled.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 33 (2003), S. 215-231 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract This paper presents a review of atomic-scale defects (planar defects and dislocations) analysis using atom probe (AP) and field ion microscopy (FIM). A large part of the discussion is dedicated to the first atomic-scale observation of a Cottrell atmosphere by a three-dimensional atom probe method (3DAP). The nanoscale boron segregation to line dislocations and planar defects in a B2-ordered FeAl (40 at.%Al) is imaged in three dimensions of the real space. The boron-enriched Cottrell atmosphere is imaged in the close vicinity of an edge 001〉 dislocation as a rod 3 nm in diameter, around to the dislocation line.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 34 (2004), S. 41-81 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: This review focuses on the preparation of capped nanoparticles of inorganic materials, classified by composition. The materials described include elemental metals and metalloids (semiconductors), chalcogenide II-VI and IV-VI semiconductors, III-V semiconductors, and oxides (both of simple- and multitransition metal). Although particular emphasis is placed on methods that yield large volumes of nanoparticles, recent novel methods that may not necessarily be scalable are also reviewed. The review makes apparent the richness of chemistry that has become routine to practitioners in the field; diverse inorganic systems with distinct chemistry require distinct methods of preparation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 34 (2004), S. 373-408 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Molecular biomimetics can be defined as mimicking function, synthesis, or structure of materials and systems at the molecular scale using biological pathways. Here, inorganic-binding polypeptides are used as molecular building blocks to control assembly and formation of functional inorganic and hybrid materials and systems for nano- and nanobiotechnology applications. These polypeptides are selected via phage or cell surface display technologies and modified by molecular biology to tailor their binding and multifunctionality properties. The potential of this approach in creating new materials systems with useful physical and biological properties is enormous. This mostly stems from molecular recognition and self-assembly characteristics of the polypeptides plus the added advantage of genetic manipulation of their composition and structure. In this review, we highlight the basic premises of molecular biomimetics, describe the approaches in selecting and engineering inorganic-binding polypeptides, and present examples of their utility as molecular linkers in current and future applications.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 34 (2004), S. 339-372 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Nanostructures are fabricated using either conventional or unconventional tools-that is, by techniques that are highly developed and widely used or by techniques that are relatively new and still being developed. This chapter reviews techniques of unconventional nanofabrication, and focuses on experimentally simple and inexpensive approaches to pattern features with dimensions 〈100 nm. The techniques discussed include soft lithography, scanning probe lithography, and edge lithography. The chapter includes recent advances in fabricating nanostructures using each set of techniques, together with demonstrated advantages, limitations, and applications for each.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 32 (2000), S. 347-382 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract The relationship between flow in the arteries, particularly the wall shear stresses, and the sites where atherosclerosis develops has motivated much of the research on arterial flow in recent decades. It is now well accepted that it is sites where shear stresses are low, or change rapidly in time or space, that are most vulnerable. These conditions are likely to prevail at places where the vessel is curved; bifurcates; has a junction, a side branch, or other sudden change in flow geometry; and when the flow is unsteady. These flows, often but not always involving flow separation or secondary motions, are also the most difficult ones in fluid mechanics to analyze or compute. In this article we review the modeling studies and experiments on steady and unsteady, two-and three-dimensional flows in arteries, and in arterial geometries most relevant in the context of atherosclerosis. These include studies of normal vessels-to identify, on the basis of the fluid mechanics, lesion foci-and stenotic vessels, to model and measure flow in vessels after the lesions have evolved into plaques sufficiently large to significantly modify the flow. We also discuss recent work that elucidates many of the pathways by which mechanical forces, primarily the wall shear stresses, are transduced to effect changes in the arterial wall at the cellular, subcellular, and genetic level.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 32 (2000), S. 383-408 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract New developments have occurred in recent years in the field of dynamo theory. The increase in computer capacity has permitted simulations of convection-driven dynamos in rotating spherical fluid shells in parameter ranges much closer to those of the Earth's core than has been possible before. The progress in handling flows of liquid sodium in large containers, on the other hand, has opened opportunities for realizations of homogeneous dynamos in the laboratory. These developments will lead to a deeper understanding of the origin of magnetic fields in planets and in stars.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 32 (2000), S. 519-571 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract The single-point statistics of turbulence in the 'roughness sub-layer' occupied by the plant canopy and the air layer just above it differ significantly from those in the surface layer. The mean velocity profile is inflected, second moments are strongly inhomogeneous with height, skewnesses are large, and second-moment budgets are far from local equilibrium. Velocity moments scale with single length and time scales throughout the layer rather than depending on height. Large coherent structures control turbulence dynamics. Sweeps rather than ejections dominate eddy fluxes and a typical large eddy consists of a pair of counter-rotating streamwise vortices, the downdraft between the vortex pair generating the sweep. Comparison with the statistics and instability modes of the plane mixing layer shows that the latter rather than the boundary layer is the appropriate model for canopy flow and that the dominant large eddies are the result of an inviscid instability of the inflected mean velocity profile. Aerodynamic drag on the foliage is the cause both of the unstable inflected velocity profile and of a 'spectral short cut' mechanism that removes energy from large eddies and diverts it to fine scales, where it is rapidly dissipated, bypassing the inertial eddy-cascade. Total dissipation rates are very large in the canopy as a result of the fine-scale shear layers that develop around the foliage.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 32 (2000), S. 477-518 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Lava flows are gravity currents of partially molten rock that cool as they flow, in some cases melting the surface over which they flow but in all cases gradually solidifying until they come to rest. They present a wide range of flow regimes from turbulent channel flows at moderate Reynolds numbers to extremely viscous or plastic, creeping flows, and even brittle rheology may play a role once some solid has formed. The cooling is governed by the coupling of heat transport in the flowing lava with transfer from the lava surface into the surrounding atmosphere or water or into the underlying solid, and it leads to large changes in rheology. Instabilities, mostly resulting from cooling, lead to flow branching, surface folding, rifting, and fracturing, and they contribute to the distinctive styles and surface appearances of different classes of flows. Theoretical and laboratory models have complemented field studies in developing the current understanding of lava flows, motivated by the extensive roles they play in the development of planetary crusts and ore deposits and by the immediate hazards posed to people and property. However, much remains to be learned about the mechanics governing creeping, turbulent, and transitional flows in the presence of large rheology change on cooling and particularly about the advance of flow fronts, flow instabilities, and the development of flow morphology. I introduce the dynamical problems involved in the study of lava flows and review modeling approaches.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 32 (2000), S. 659-708 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Predicting the motion of bubbles in dispersed flows is a key problem in fluid mechanics that has a bearing on a wide range of applications from oceanography to chemical engineering. In this review we synthesize the recent progress made in describing bubble motion in inhomogeneous flow. A trident approach consisting of experimental, analytical, and numerical work has given a clearer description of the hydrodynamic forces experienced by isolated bubbles moving either in inviscid flows or in slightly viscous laminar flows. A significant part of the paper is devoted to a discussion of drag, added-mass force, and shear-induced lift experienced by spheroidal bubbles moving in inertially dominated, time-dependent, rotational, nonuniform flows. The important influence of surfactants and shape distortion on bubble motion in a quiescent liquid is highlighted. Examples of bubble motion in inhomogeneous flows combining several of the effects mentioned above are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 32 (2000), S. 709-778 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract This review summarizes results for Rayleigh-Benard convection that have been obtained over the past decade or so. It concentrates on convection in compressed gases and gas mixtures with Prandtl numbers near one and smaller. In addition to the classical problem of a horizontal stationary fluid layer heated from below, it also briefly covers convection in such a layer with rotation about a vertical axis, with inclination, and with modulation of the vertical acceleration.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 33 (2001), S. 155-206 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract An optical technique is described that is often used nowadays to measure surface pressures on wind tunnel models and flight vehicles. The technique uses luminescent coatings, which are painted on the model surface, excited by light of appropriate wavelength, and imaged with digital cameras. The intensity of the emitted light is inversely proportional to the surface pressure. Hence, the surface pressures can be measured efficiently and affordably with a high spatial resolution. The theory and chemistry of how such coatings work and the parameters that affect them are presented. The required hardware and software are described, with emphasis on the different measurement systems and procedures. The various error sources are discussed, and correction schemes that can be used to minimize them are presented. Sample results, covering a wide range of conditions and applications, are presented and discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 33 (2001), S. 319-338 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Early work of Ricardo is described, in which squish is used in flat-head engines to generate turbulence levels comparable to those in overhead-valve engines, leading to rapid flame propagation, and suppressing knock. Work by NACA before World War II is described, in which turbulence levels were measured in overhead-valve engines, indicating indirectly that surprisingly high levels were achieved just before ignition, possibly due to a tumble instability. Finally, work of Obukhov of 30 years ago is described, in which instabilities of tumbling flow are investigated in ellipsoids crudely modeling the engine cylinder as the piston rises; this suggests that there is an instability leading to intense small-scale motion just before ignition. Suggestions for further work are given.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 33 (2001), S. 265-287 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Polymer melts exhibit extrusion instabilities at sufficiently high levels of stress, and they appear to exhibit wall slip. I explore the evidence for slip, the possible mechanisms of slip, and the relation between slip and extrusion instabilities.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 33 (2001), S. 415-443 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Junction flows occur when a boundary layer encounters an obstacle attached to the same surface. Physical phenomena that have been observed for blunt and streamlined obstacles are discussed for both laminar and turbulent approaching boundary layers. The pressure gradients around an obstacle produce a three-dimensional separation with horseshoe vortices that wrap around the obstacle. Except for very low Reynolds number laminar flows, these vortices are highly unsteady and are responsible for high turbulence intensities, high surface pressure fluctuations and heat transfer rates, and erosion scour in the nose region of the obstacle. Calculation methods are also reviewed; methods that capture the large-scale chaotic vortical motions should be used for computations. Some work on the control, modification, or elimination of such vortices is also reviewed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 33 (2001), S. 587-617 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract This article describes some of the fundamental ideas underlying methods for induced-drag prediction and reduction. A review of current analysis and design methods, including their development and common approximations, is followed by a survey of several approaches to lift-dependent drag reduction. Recent concepts for wing planform optimization, highly nonplanar surfaces, and various tip devices may lead to incremental but important gains in aircraft performance. Focusing on relatively high-aspect-ratio subsonic wings, the review suggests that opportunities for new concepts remain, but the greatest challenge lies in their integration with other aspects of the system.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 33 (2001), S. 519-547 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Spilling breakers receive much less attention from casual observers of the ocean surface than their more dramatic and powerful plunging counterparts. However, spilling breakers probably occur more frequently than plunging breakers and are important contributors to turbulence, spray, and bubble generation at the water surface. Recent research has concentrated primarily on relatively weak and/or short-wavelength spillers whose crests are strongly affected by surface tension forces both during wave steepening and the resulting turbulent free-surface flow. When surface tension forces are dominant, the free surface does not overturn or splash during the breaking process but undergoes some unique and interesting motions. In this review, recent research contributions are discussed and placed in the context of spilling behavior over a wide range of wavelengths and breaking intensities.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 33 (2001), S. 491-517 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract The compression system instabilities known as surge and rotating stall are natural limits to the performance of all compressors and are especially troubling in gas turbine engines. In the last 15 years, rapid progress has been made in understanding this complex problem through the application of control technology; in particular, system identification techniques have proven to be useful. New findings include the roles of compressibility and nonlinearity in the stall-inception process. These findings have been used to implement feedback control schemes that have achieved increased stability in a variety of compressors and engines. Approaches fall into one of two categories: (a) operating range extension through active damping of linear disturbances, or (b) manipulation of the nonlinear system dynamics to maintain the operating point close to the instability boundary in the presence of disturbances seen in operation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 34 (2002), S. 19-35 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract This essay is based on the G.K. Batchelor Memorial Lecture that I delivered in May 2000 at the Institute for Theoretical Physics (ITP), Santa Barbara, where two parallel programs on Turbulence and Astrophysical Turbulence were in progress. It focuses on George Batchelor's major contributions to the theory of turbulence, particularly during the postwar years when the emphasis was on the statistical theory of homogeneous turbulence. In all, his contributions span the period 1946-1992 and are for the most part concerned with the Kolmogorov theory of the small scales of motion, the decay of homogeneous turbulence, turbulent diffusion of a passive scalar field, magnetohydrodynamic turbulence, rapid distortion theory, two-dimensional turbulence, and buoyancy-driven turbulence.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 34 (2002), S. 321-347 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Turbulent flows driven by thermal buoyancy are featured by phenomena that pose a special challenge to conventional one-point closure models. Inherent unsteadiness, energy nonequilibrium, counter-gradient diffusion, strong pressure fluctuations, and lack of universal scaling, all believed to be associated with distinct large-scale coherent eddy structures, are hardly tractable by Reynolds-type averaging. Second-moment closures, though inadequate for providing information on eddy structure, offer better prospects than eddy-viscosity models for capturing at least some of the phenomena. For some configurations (e.g., with heating from below), unsteady computational solutions of ensemble-averaged equations, using a one-point closure as the subscale model, may be unavoidable for accurate prediction of flow details and wall heat transfer. This article reviews the rationale and some specific modeling issues related to buoyant flows within the realm of one-point closures. The inadequacy of isotropic eddy-diffusivity models is discussed first, followed by the rationale of the second-moment modeling and its term-by-term scrutiny based on direct numerical simulations (DNS). Algebraic models based on a rational truncation of the differential second-moment closure are proposed as the minimum closure level for complex flows. These closures are also recommended as subscale models for transient statistical modeling (T-RANS) and very large eddy simulations (VLES). Examples of applications illustrate some recent achievements.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 34 (2002), S. 469-502 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Remote observations of a surface ship wake using synthetic aperture radar (SAR) show distinct features such as a dark trailing centerline region, bright V-images aligned at some angle to the ship's path, and, sometimes, either the transverse or the diverging waves of the Kelvin-wave pattern. The dark region of relatively low radar backscatter is usually associated with a region that is relatively lacking in short wave components, whereas the bright line feature suggests a region of enhanced radar return within the apparent angular confines of the ship's usual Kelvin-wave pattern. This review provides a survey of remotely sensed wake images, the systems that have collected these images, and an overview of the theory of Kelvin wakes-a primary source of the phenomena that cause the dark centerline and bright V-images-with example predictions. The review concludes with a survey of the phenomena that cause the dark centerline returns and some example predictions of the radar reflectivity across these dark centerline returns.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 34 (2002), S. 559-593 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract We review the mechanisms of steepening and breaking for internal gravity waves in a continuous density stratification. After discussing the instability of a plane wave of arbitrary amplitude in an infinite medium at rest, we consider the steepening effects of wave reflection on a sloping boundary and propagation in a shear flow. The final process of breaking into small-scale turbulence is then presented. The influence of those processes upon the fluid medium by mean flow changes is discussed. The specific properties of wave turbulence, induced by wave-wave interactions and breaking, are illustrated by comparative studies of oceanic and atmospheric observations, as well as laboratory and numerical experiments. We then review the different attempts at a statistical description of internal gravity wave fields, whether weakly or strongly interacting.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 35 (2003), S. 169-182 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract The modern study of a crowd as a flowing continuum is a recent development. Distinct from a classical fluid because of the property that a crowd has the capacity to think, interesting new physical ideas are involved in its study. An appealing property of a crowd in motion is that the nonlinear, time-dependent, simultaneous equations representing a crowd are conformably mappable. This property makes many interesting applications analytically tractable. In this review examples are given in which the theory has been used to provide possible assistance in the annual Muslim Hajj, to understand the Battle of Agincourt, and, surprisingly, to locate barriers that actually increase the flow of pedestrians above that when there are no barriers present. Modern developments may help prevent some of the approximately two thousand deaths that annually occur in accidents owing to crowding.The field of crowd motion, that is, the field of "thinking fluids," is an intriguing area of research with great promise.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 35 (2003), S. 267-293 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract The recent avalanche of research activity in the field of granular matter has yielded much progress. The use of state-of-the-art (and other) computational and experimental methods has led to the discovery of new states and patterns and enabled detailed tests of theories and models. The application of statistical mechanical methods and phenomenology has contributed to the understanding of the microscopic a nd macroscopic properties of granular systems. Some previously open problems seem to be solved. Fluidized granular systems (rapid granular flows), recently referred to as granular gases, are often modeled by hydrodynamic equations of motion, some of which are based on systematic expansions applied to the pertinent Boltzmann equation. The undeniable success of granular hydrodynamics is somewhat surprising in view of the lack of scale separation in these systems and the neglect of certain correlations in most derivations of the hydrodynamic equations. Microstructures have been recognized as key features of granular gases; explanations for their existence have been proposed, and many of their properties elucidated. Granular-gas multistability can often be traced back to microstructure dynamics. In spite of these and other impressive advances, this field still poses serious challenges.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 35 (2003), S. 317-340 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Recent advances in achieving textbook multigrid efficiency for fluid simulations are presented. Textbook multigrid efficiency is defined as attaining the solution to the governing system of equations in a computational work that is a small multiple of the operation counts associated with discretizing the system. Strategies are reviewed to attain this efficiency by exploiting the factorizability properties inherent to a range of fluid simulations, including the compressible Navier-Stokes equations. Factorizability is used to separate the elliptic and hyperbolic factors contributing to the target system; each of the factors can then be treated individually and optimally. Boundary regions and discontinuities are addressed with separate (local) treatments. New formulations and recent calculations demonstrating the attainment of textbook efficiency for aerodynamic simulations are shown.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 36 (2004), S. 97-119 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: This paper reviews the current state of the art in accidental explosion modeling using methods based on computational fluid dynamics (CFD) in the petrochemical process industries. We discuss the problem in terms of its industrial importance and its technical difficulty, which stems mainly from the large range of length and timescales that must be represented. Explicit representation of all scales is not feasible due to limitations of computational cost, and modeling of unresolved physical features is required. We also discuss geometry modeling using the porosity/distributed resistance (PDR) method and review relevant combustion modeling. We describe an advanced CFD approach using unstructured adaptive gridding and discuss its usefulness in the context of results obtained for both two dimensional and three dimensional simulations of gas explosion phenomena in complex geometries.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 36 (2004), S. 81-96 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Early concepts in shock wave drag reduction enabled modern aeronautical systems, and continuing research progress in this arena is crucial for significant improvements in long haul transports and various military platforms and weapons. The research area is rich in concepts/approaches, but many of these have not progressed into the realm of application. This is due in part to a lack of knowledge on the part of the fluids research community concerning the multidisciplinary "real-world" design space/metrics and a consequent lack of the requisite breadth and depth of research information required to evaluate/apply the concept. The article reviews the extant wave drag reduction approaches that are (a) well understood/applied, (b) under active study/indicate considerable promise, and (c) those in the nascent stage only.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 36 (2004), S. 121-147 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Almost all vessels carrying fluids within the body are flexible, and interactions between an internal flow and wall deformation often underlie a vessel's biological function or dysfunction. Such interactions can involve a rich range of fluid-mechanical phenomena, including nonlinear pressure-drop/flow-rate relations, self-excited oscillations of single-phase flow at high Reynolds number and capillary-elastic instabilities of two-phase flow at low Reynolds number. We review recent advances in understanding the fundamental mechanics of flexible-tube flows, and discuss physiological applications spanning the cardiovascular system (involving wave propagation and flow-induced instabilities of blood vessels), the respiratory system (involving phonation, the closure and reopening of liquid-lined airways, and Marangoni flows on flexible surfaces), and elsewhere in the body (involving active peristaltic transport driven by fluid-structure/muscle interactions).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 36 (2004), S. 233-253 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: We review the use of ray models for internal waves, particularly formulations for calculating wave amplitudes along the ray. These are expressed in spatial, wave number, and phase-space coordinates. The choice of formulation affects not only the difficulty of the calculations for rays and caustics but also the degree to which the waves satisfy slowly varying assumptions. We describe several examples taken from atmospheric and oceanic applications that illustrate the variety of options for ray models.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 36 (2004), S. 197-231 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The characterization of blood flow is important for understanding the function of the cardiovascular system under normal and diseased conditions, designing cardiovascular devices, and diagnosing and treating congenital and acquired cardiovascular disease. Experimental methods, especially magnetic resonance imaging techniques can be used to noninvasively quantify blood flow for diagnosing cardiovascular disease, researching disease mechanisms, and validating assumptions and predictions of mathematical models. Computational methods can be used to simulate blood flow and vessel dynamics, test hypotheses of disease formation under controlled conditions, and evaluate devices that have not yet been built and treatments that have not yet been implemented. In this article we review experimental and computational methods for quantifying blood flow velocity and pressure fields in human arteries. We place particular emphasis on providing an introduction to the physics and applications of magnetic resonance imaging, and surveying lumped parameter, one-dimensional, and three-dimensional numerical methods used to model blood flow.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 36 (2004), S. 173-196 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: We review the experimental evidence on turbulent flows over rough walls. Two parameters are important: the roughness Reynolds number ks+ , which measures the effect of the roughness on the buffer layer, and the ratio of the boundary layer thickness to the roughness height, which determines whether a logarithmic layer survives. The behavior of transitionally rough surfaces with low ks+ depends a lot on their geometry. Riblets and other drag-reducing cases belong to this regime. In flows with delta/k 〈 50, the effect of the roughness extends across the boundary layer, and is also variable. There is little left of the original wall-flow dynamics in these flows, which can perhaps be better described as flows over obstacles. We also review the evidence for the phenomenon of d-roughness. The theoretical arguments are sound, but the experimental evidence is inconclusive. Finally, we discuss some ideas on how rough walls can be modeled without the detailed computation of the flow around the roughness elements themselves.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 36 (2004), S. 315-345 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: We review artificial boundary conditions (BCs) for simulation of inflow, outflow, and far-field (radiation) problems, with an emphasis on techniques suitable for compressible turbulent shear flows. BCs based on linearization near the boundary are usually appropriate for inflow and radiation problems. A variety of accurate techniques have been developed for this case, but some robustness and implementation issues remain. At an outflow boundary, the linearized BCs are usually not accurate enough. Various ad hoc models have been proposed for the nonlinear case, including absorbing layers and fringe methods. We discuss these techniques and suggest directions for future modeling efforts.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 31 (2001), S. 25-46 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Novel therapeutic strategies can be envisioned based on altering the expression level of target genes involved in cellular processes and disease progression; however, our ability to efficiently manipulate gene expression is limited. Non-viralbased gene therapy provides a relatively safe approach to increase or decrease the expression of a specific gene using DNA or antisense sequences; however, synthetic systems are required to direct plasmids and oligonucleotides to a specific tissue and to enhance cellular uptake and intracellular trafficking. Numerous materials are being developed that interact with DNA to enhance its properties (e.g. stability, charge density) and thus direct its biodistribution and facilitate cellular interactions. The development of synthetic delivery systems to manipulate gene expression efficiently is a powerful tool that will ultimately lead to novel therapeutic strategies for the treatment of numerous disorders.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 31 (2001), S. 203-235 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Continuing increases in the areal density of hard disk drives will be limited by thermal instability of the thin film medium. Patterned media, in which data are stored in an array of single-domain magnetic particles, have been suggested as a means to overcome this limitation and to enable recording densities of up to 150 Gbit cm-2 (1 Tbit inch-2) to be achieved. However, the implementation of patterned media requires fabrication of sub-50-nm features over large areas and the design of recording systems that differ substantially from those used in conventional hard drives. This review describes patterned media, including the fabrication of arrays of small magnetic particles and their magnetic properties, such as domain structure, reversal mechanisms, thermal stability, and interactions. The practical implementation of patterned media recording schemes is assessed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 31 (2001), S. 291-321 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Energetic materials are chemical compounds or mixtures that store significant quantities of energy. In this review, we explore recent approaches to property prediction and new material synthesis. We show how the successful design of new energetic materials with tailored properties is becoming a practical reality.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 31 (2001), S. 387-404 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract We summarize developments in the construction of synthetic cells made from polymers, with a particular focus on mimicking the structure and behavior of blood cells. Two basic themes emerge-the use of block copolymers to make polmer vesicles and the functionalization of colloidal or polymeric microspheres with cell-like adhesive properties. Both platforms provide a means for building the complex hierarchy that is characteristic of biological cells, while also incorporating novel and perhaps superior properties of material strength, specific targeting, and controlled release.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 31 (2001), S. 373-385 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Materials research has been applied successfully to the study of archaeological ceramics for the last fifty years. To learn about our history and the human condition is not just to analyze and preserve the objects but also to investigate and understand the knowledge and skills used to produce and use them. Many researchers have probed the limits and methods of such studies, always mindful that a glimpse at ancient reality lies in the details of time and place, context of finds, and experimentally produced data, usually compared with standards that were collected in an equivalent ethnographic setting or that were fabricated in a laboratory in order to elucidate the critical questions in a technology that could be understood in no other way. The basis of most studies of ancient technology has been established as microstructure; composition and firing; methods and sequence of manufacture; differentiation of use; use-wear and post-depositional processes; technological variability that can be interpreted as a pattern of stasis or innovation, which can be related to cultural continuity or change; and interpretation that can involve technology, subsistence trade, organization, and symbolic group- and self-definition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 32 (2002), S. 39-52 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Methods of density functional theory in statistical mechanics have been applied extensively over the past 15 years to problems in the equilibrium and dynamic properties of materials. They allow the incorporation of microscopic atomic and molecular forces at a much lower computational cost than direct simulation. This review discusses recent advances in the calculation of density functionals for materials, with particular emphasis on fluids at walls and in porous media, on crystal nucleation and growth from the melt, and on complex fluids and biomolecules. The extension of equilibrium density functional methods to approximate theories of phase transition dynamics is emphasized.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 32 (2002), S. 77-111 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract We review progress made in quantitatively ascertaining the various statistical correlation functions that are fundamental to determining the material properties of specific classes of disordered materials. Topics covered include the definitions of the correlation functions, a unified theoretical means of representing and computing the different statistical descriptors, structural characterization from two-dimensional and three-dimensional images of materials, scalar order metrics and particle packings, and reconstruction techniques.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 32 (2002), S. 347-375 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract We review the recent progress in our understanding of the mechanical and electrical properties of carbon nanotubes, emphasizing the theoretical aspects. Nanotubes are the strongest materials known, but the ultimate limits of their strength have yet to be reached experimentally. Modeling of nanotube-reinforced composites indicates that the addition of small numbers of nanotubes may lead to a dramatic increase in the modulus, with only minimal crosslinking. Deformations in nanotube structures lead to novel structural transformations, some of which have clear electrical signatures that can be utilized in nanoscale sensors and devices. Chemical reactivity of nanotube walls is facilitated by strain, which can be used in processing and functionalization. Scanning tunneling microscopy and spectroscopy have provided a wealth of information about the structure and electronic properties of nanotubes, especially when coupled with appropriate theoretical models. Nanotubes are exceptional ballistic conductors, which can be used in a variety of nanodevices that can operate at room temperature. The quantum transport through nanotube structures is reviewed at some depth, and the critical roles played by band structure, one-dimensional confinement, and coupling to nanoscale contacts are emphasized. Because disorder or point defect-induced scattering is effectively averaged over the circumference of the nanotube, electrons can propagate ballistically over hundreds of nanometers. However, severe deformations or highly resistive contacts isolate nanotube segments and lead to the formation of quantum dots, which exhibit Coulomb blockade effects, even at room temperature. Metal-nanotube and nanotube-nanotube contacts range from highly transmissive to very resistive, depending on the symmetry of two structures, the charge transfer, and the detailed rehybridization of the wave functions. The progress in terms of nanotube applications has been extraordinarily rapid, as evidenced by the development of several nanotube-based prototypical devices, including memory and logic circuits, chemical sensors, electron emitters and electromechanical actuators.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 32 (2002), S. 401-436 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Polymers offer a wide spectrum of possibilities for materials applications, in part because of the chemical complexity and variability of the constituent molecules, and in part because they can be blended together with other organic as well as inorganic components. The majority of applications of polymeric materials is based on their excellent mechanical properties, which arise from the long-chain nature of the constituents. Microscopically, this means that polymeric materials are able to respond to external forces in a broad frequency range, i.e., with a broad range of relaxation processes. Computer simulation methods are ideally suited to help to understand these processes and the structural properties that lead to them and to further our ability to predict materials properties and behavior. However, the broad range of timescales and underlying structure prohibits any one single simulation method from capturing all of these processes. This manuscript provides an overview of some of the more popular computational models and methods used today in the field of molecular and mesoscale simulation of polymeric materials, ranging from molecular models and methods that treat electronic degrees of freedom to mesoscopic field theoretic methods.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 32 (2002), S. 437-465 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Computational mechanics comprises all types of computer modeling of the mechanical behavior of materials. In this contribution we concentrate on new developments in modeling based on the finite element method (FEM), especially deformation analyses based on numerical homogenization techniques (self-consistent embedding procedure, matricity model), simulations of real microstructural cut-outs, damage analyses of artificial and real microstructures, and multiscale modeling aspects. The limit flow stresses for transverse loading of metal matrix composites reinforced with continuous fibers and for uniaxial loading of spherical particle reinforced metal matrix composites are investigated by recently developed embedded cell models in conjunction with the finite element method. A fiber of circular cross section or a spherical particle is surrounded by a metal matrix, which is again embedded in the composite material, with the mechanical behavior to be determined iteratively in a self-consistent manner. Stress-strain curves have been calculated for a number of metal matrix composites with the embedded cell method and verified with literature data of a particle reinforced Ag/58vol.%Ni composite and for a transversely loaded uniaxially fiber reinforced Al/46vol.%B composite. Good agreement has been obtained between experiment and calculation, and the embedded cell model is thus found to well represent metal matrix composites with randomly arranged inclusions. Systematic studies of the mechanical behavior of fiber- and particle-reinforced composites with plane strain and axisymmetric embedded cell models are carried out to determine the influence of fiber or particle volume fraction and matrix strain-hardening ability on composite strengthening levels. Results for random inclusion arrangements obtained with self-consistent embedded cell models are compared with strengthening levels for regular inclusion arrangements from conventional unit cell models. It is found that with increasing inclusion volume fractions pronounced differences in composite strengthening exist between all models. Finally, closed-form expressions are derived to predict composite strengthening for regular fiber arrangements and for realistic random fiber or particle arrangements as a function of matrix hardening and particle volume fraction. The impact of the results on effectively designing technically relevant metal matrix composites reinforced by randomly arranged strong inclusions is emphasized. Atomistic modeling such as Monte Carlo (MC) simulations and molecular dynamics (MD) methods, dislocation theoretical modeling, and continuum mechanical methods are applied in order to provide insight into the mechanical behavior of materials. Simulations are presented graphically in a systematic manner for different material systems and are compared with experimental results. Finally, it will be shown that the results can be used to predict the future behavior of materials presently in service and even to design new materials.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 33 (2003), S. 29-54 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Interfacial adhesion plays a central role in a number of technologically important applications. Quantitatively measuring the adhesion of an interface and understanding the processes and controlling mechanisms of energy dissipation is not always a straightforward task, however. It is often not enough to know that an interface in a particular application is weak and prone to failure because it can be difficult to accurately recreate that interface with a bulk specimen and derive a meaningful adhesion value. Rather, a fundamental knowledge of the processes that actually contribute to the interfacial strength is important, so that, when bulk specimens are prepared, care can be taken to eliminate energy-absorbing processes that are not present in the actual application. Accordingly, this paper reviews some of the literature highlighting the contributing factors that control interfacial adhesion. The focus is on those models that describe the detailed mechanisms of the energy-absorbing processes and on some of the experimental data that illustrates those models.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 33 (2003), S. 1-27 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The hydrogen economy is fast approaching as petroleum reserves are rapidly consumed. The fuel cell promises to deliver clean and efficient power by combining hydrogen and oxygen in a simple electrochemical device that directly converts chemical energy to electrical energy. Hydrogen, the most plentiful element available, can be extracted from water by electrolysis. One can imagine capturing energy from the sun and wind and/or from the depths of the earth to provide the necessary power for electrolysis. Alternative energy sources such as these are the promise for the future, but for now they are not feasible for power needs across the globe. A transitional solution is required to convert certain hydrocarbon fuels to hydrogen. These fuels must be available through existing infrastructures such as the natural gas pipeline. The present review discusses the catalyst and adsorbent technologies under development for the extraction of hydrogen from natural gas to meet the requirements for the proton exchange membrane (PEM) fuel cell. The primary market is for residential applications, where pipeline natural gas will be the source of H2 used to power the home. Other applications including the reforming of methanol for portable power applications such as laptop computers, cellular phones, and personnel digital equipment are also discussed. Processing natural gas containing sulfur requires many materials, for example, adsorbents for desulfurization, and heterogeneous catalysts for reforming (either autothermal or steam reforming) water gas shift, preferential oxidation of CO, and anode tail gas combustion. All these technologies are discussed for natural gas and to a limited extent for reforming methanol.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 33 (2003), S. 55-90 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Chemical reactivity at heterophase interfaces is reviewed with a special focus on metal-oxide and oxide-oxide interfaces. Equilibrium chemistry of interfaces is discussed in terms of processes at the macroscopic and atomic level. The dependency on thermodynamic and crystallographic variables is described and illustrated by experimental results. Any reaction-related motion of an interface is associated with numerous transport and reaction steps that include not only atom transfer across the interface, chemical reactions between species and defects and phase transitions, but also steps accommodating lattice mismatch and volume changes. Faceting and morphology evolution of interfaces are included in the considerations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 33 (2003), S. 91-128 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The performance of the oxide-ion electrolyte of a solid oxide fuel cell (SOFC) is critical to the development of an intermediate-temperature system. Although yttria-stabilized zirconia is the electrolyte used in SOFCs under commercial development, other candidate materials are now available, and there remains a strong motivation to search for new, improved oxide-ion electrolytes. The leading contenders are discussed not only with respect to their oxide-ion conductivity, but also with respect to mechanical and chemical compatibility with the electrodes and the working environment at each electrode.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 33 (2003), S. 129-154 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The main obstacles to greater commercialization of polymer electrolyte fuel cells are mostly related to the low-proton conductivity at low-relative humidity of the known ionomeric membranes, to their high methanol permeability and poor mechanical properties above ~130oC. A possible solution for these problems has been found in the development of composite membranes, where particles of suitable fillers are dispersed in the ionomer matrix. The preparation methods for obtaining composite membranes are described, and recent work dealing with composite ionomeric membranes containing silica, heteropolyacids, layered metal phosphates, and phosphonates is reviewed. Finally, new strategies for the preparation of nano-composite membranes and for the filling of porous polymeric membranes with highly conductive zirconium phosphonates are described. The expected influence of size and orientation of these particles on membrane properties, such as conductivity and permeability to methanol, is also discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 33 (2003), S. 169-182 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Solid oxide fuel cells operating at temperatures below 800oC require the use of supported thin film solid electrolytes. A variety of processing methods are reviewed that can deliver electrolyte films with satisfactory performance. These include vapor phase, sol-gel, and powder methods such as colloidal deposition. An important consideration is that a number of these processing methods may not meet the low cost required by commercialization. The most cost-effective methods are considered to be simple powder methods combined with co-firing.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 33 (2003), S. 155-168 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Methanol oxidation in the cathode compartment of the fuel cell, which occurs during the oxygen-reduction reaction on Pt-based cathodes, constitutes a significant performance loss in the direct methanol fuel cells. Over the past decade, four types of methanol-resistant oxygen-reduction catalysts have been developed to circumvent this problem. Among these, transition-metal chalcogenides, and in particular RuSe, have shown effective selectivity to oxygen-reduction reaction in the presence of methanol. These catalysts not only can enhance the performance of the conventional direct methanol fuel cells but also could provide a route to develop mixed-reactants direct methanol fuel cells, which could be highly cost-effective in comparison with the conventional direct methanol fuel cells. This article is a brief update on the preparation, characterization, and implications of methanol-resistant oxygen-reduction catalysts.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 33 (2003), S. 183-213 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract After a brief survey of fuel cell types, attention is focused on material requirements for SOFC and PEMFC stacks, with an introductory section on materials technology for reformers. Materials cost and processing, together with durability issues, are emphasized as these now dominate materials selection processes for prototype stack units. In addition to optimizing the cell components, increasing attention is being given to the composition and processing of the bipolar plate component as the weight and volume of the relevant material has a major influence on the overall power density and cost of the fuel cell stack. It is concluded that the introduction of alternative materials/processes that would enable PEMFC stacks to operate at 150-200oC, and IT-SOFC stacks to operate at 500-700oC, would have a major impact on the successful commercialization of fuel cell technology.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 33 (2003), S. 581-610 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The use of chemical potential diagrams to examine interface chemistry is discussed in terms of the chemical reactions among oxides and associated interdiffusion across the interface. The driving force for both processes can be determined from the chemical potential values. The geometrical features of the chemical potential diagrams can be related to the valence stability of binary oxides and the stabilization energy of double oxides from the constituent oxides. The materials compatibility in solid oxide fuel cell materials is discussed with a focus on a lanthanum manganite cathode and a yttria-stabilized zirconia (YSZ) electrolyte. Emphasis is placed on the valence numbers of manganese in the fluorite solid solution and the perovskite oxides, which have been derived by thermodynamic analysis of the magnitude of the stabilization energy/interaction parameters as a function of ionic size for respective valence numbers. The change of manganese valence on La2Zr2O7 formation and Mn dissolution in YSZ are discussed in relation with the oxygen evolution/adsorption process. Oxygen flow associated with electrochemical reactions exhibits markedly different features depending on the direction of the polarization, which can lead to drastic changes in the interface chemistry (precipitation or interdiffusion).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 34 (2004), S. 219-246 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Nanofluids, consisting of nanometer-sized solid particles and fibers dispersed in liquids, have recently been demonstrated to have great potential for improving the heat transfer properties of liquids. Several characteristic behaviors of nanofluids have been identified, including the possibility of obtaining large increases in thermal conductivity compared with liquids without nanoparticles, strong temperature-dependent effects, and significant increases in critical heat flux. Observed behavior is in many cases anomalous with respect to the predictions of existing macroscopic theories, indicating the need for a new theory that properly accounts for the unique features of nanofluids. Theoretical studies of the possible heat transfer mechanisms have been initiated, but to date obtaining an atomic- and microscale-level understanding of how heat is transferred in nanofluids remains the greatest challenge that must be overcome in order to realize the full potential of this new class of heat transfer fluids.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 34 (2004), S. 181-218 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: As a result of their fully quantized electronic states and high radiative efficiencies, self-assembled quantum dots have enabled major advances in fundamental physics studies of zero-dimensionality semiconductor systems and in a variety of novel device applications. This article reviews some of the more important recent advances, covering the study and application of both ensembles and single quantum dots. It shows that a comprehensive understanding of the dot electronic structure and dynamical carrier processes is possible and that this knowledge underpins the various device applications.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 32 (2000), S. 93-136 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract This review pertains to the body of work dealing with internal recirculating flows generated by the motion of one or more of the containing walls. These flows are not only technologically important, they are of great scientific interest because they display almost all fluid mechanical phenomena in the simplest of geometrical settings. Thus corner eddies, longitudinal vortices, nonuniqueness, transition, and turbulence all occur naturally and can be studied in the same closed geometry. This facilitates the comparison of results from experiment, analysis, and computation over the whole range of Reynolds numbers. Considerable progress has been made in recent years in the understanding of three-dimensional flows and in the study of turbulence. The use of direct numerical simulation appears very promising.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 32 (2000), S. 275-308 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract An overview of the near and far-field breakup and atomization of a liquid jet by a high speed annular gas jet is presented. The various regimes of liquid jet breakup are discussed in the parameter space of the liquid Reynolds number, the aerodynamic Weber number, and the ratio of the momentum fluxes between the gas and the liquid streams. Recent measurements of the gas-liquid interfacial instabilities are reviewed and used to analyze the underlying physical mechanisms involved in the primary breakup of the liquid jet. This process is shown to consist of the periodic stripping of liquid sheets, or ligaments, which subsequently break up into smaller lumps or drops. Models to predict the liquid shedding frequency, as well as the global parameters of the spray such as the liquid core length and spray spreading angle are discussed and compared with the experiments. The role of the secondary liquid breakup on the far-field atomization of the liquid jet is also considered, and an attempt is made to apply the classical turbulent breakup concepts to explain qualitatively the measurement of the far-field droplet size distribution and its dependence on the liquid to gas mass and momentum flux ratios. Models for the droplet breakup frequency in the far-field region of the jet, and for the daughter-size probability density function, which account for the effect of the liquid loading on the local turbulent dissipation rate in the gas, are discussed in the context of the statistical description of the spray in the far field. The striking effect of the addition of swirl in the gas stream is also examined.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 32 (2000), S. 409-443 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Recent developments in the study of buoyancy-driven convection, magnetoconvection, and convection-driven dynamos in rapidly rotating spherical systems, with application to the fluid parts of the metallic cores of the Earth and other planets and satellites, are reviewed. While the fluid motions driven by convection generate and sustain magnetic fields by magnetohydrodynamic dynamo processes, the pattern and strength of the convective motions that control dynamo action are critically influenced by the combined and inseparable effects of rotation, magnetic fields, and spherical geometry. Emphasis is placed on the key dynamic feature of rotating spherical magnetohydrodynamics-the interaction between the Coriolis and Lorentz forces and the resulting effect on convection and magnetohydrodynamic processes. It is shown that the small value of the Ekman number, a result of rapid rotation and small viscosity in the fluid parts of planetary cores, causes severe difficulties in modeling planetary dynamos. There exist huge disparities, as a direct consequence of a small Ekman number, in the spatial, temporal, and amplitude scales of a convection-driven dynamo. The use of hyperviscosity removes these difficulties, but at the same time it alters the key dynamics in a fundamental and undesirable way. A convection-driven dynamo solution in rotating spherical systems at a sufficiently small Ekman number that is dynamically relevant to planetary fluid cores is yet to be achieved and remains a great challenge.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 33 (2001), S. 93-127 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract This review summarizes recent experimental studies of instabilities in free-surface flows driven by thermocapillarity. Two broad classes are considered, depending upon whether the imposed temperature gradient is perpendicular (Marangoni-convection instability) or parallel (thermocapillary-convection instability) to the free surface. Both steady and time-dependent instabilites are reviewed in experiments employing both large- and small-aspect-ratio geometries of various symmetries.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...