ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • XES  (2)
  • 502.82  (1)
  • International Union of Crystallography  (3)
  • Blackwell Publishing Ltd
  • 2020-2022  (3)
  • 2000-2004
  • 1980-1984
  • 1965-1969
Collection
Publisher
Years
  • 2020-2022  (3)
  • 2000-2004
  • 1980-1984
  • 1965-1969
Year
  • 1
    Publication Date: 2021-06-30
    Description: ROBL‐II provides four different experimental stations to investigate actinide and other alpha‐ and beta‐emitting radionuclides at the new EBS storage ring of ESRF within an energy range of 3 to 35 keV. The XAFS station consists of a highly automatized, high sample throughput installation in a glovebox, to measure EXAFS and conventional XANES of samples routinely at temperatures down to 10 K, and with a detection limit in the sub‐p.p.m. range. The XES station with its five bent‐crystal analyzer, Johann‐type setup with Rowland circles of 1.0 and 0.5 m radii provides high‐energy resolution fluorescence detection (HERFD) for XANES, XES, and RIXS measurements, covering both actinide L and M edges together with other elements accessible in the 3 to 20 keV energy range. The six‐circle heavy duty goniometer of XRD‐1 is equipped for both high‐resolution powder diffraction as well as surface‐sensitive CTR and RAXR techniques. Single crystal diffraction, powder diffraction with high temporal resolution, as well as X‐ray tomography experiments can be performed at a Pilatus 2M detector stage (XRD‐2). Elaborate radioprotection features enable a safe and easy exchange of samples between the four different stations to allow the combination of several methods for an unprecedented level of information on radioactive samples for both fundamental and applied actinide and environmental research.
    Description: ROBL‐II at ESRF provides four experimental stations to investigate actinides with X‐ray absorption and emission spectroscopy, and with surface, high‐resolution powder, and single‐crystal X‐ray diffractometry.
    Keywords: 549 ; actinides ; EXAFS ; XANES ; HERFD‐XANES ; XAS ; XES ; RIXS ; XRD ; CTR ; RAXR ; surface diffraction
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-26
    Description: Owing to the development of X‐ray focusing optics during the past decades, synchrotron‐based X‐ray microscopy techniques allow the study of specimens with unprecedented spatial resolution, down to 10 nm, using soft and medium X‐ray photon energies, though at the expense of the field of view (FOV). One of the approaches to increase the FOV to square millimetres is raster‐scanning of the specimen using a single nanoprobe; however, this results in a long data acquisition time. This work employs an array of inclined biconcave parabolic refractive multi‐lenses (RMLs), fabricated by deep X‐ray lithography and electroplating to generate a large number of long X‐ray foci. Since the FOV is limited by the pattern height if a single RML is used by impinging X‐rays parallel to the substrate, many RMLs at regular intervals in the orthogonal direction were fabricated by tilted exposure. By inclining the substrate correspondingly to the tilted exposure, 378000 X‐ray line foci were generated with a length in the centimetre range and constant intervals in the sub‐micrometre range. The capability of this new X‐ray focusing device was first confirmed using ray‐tracing simulations and then using synchrotron radiation at BL20B2 of SPring‐8, Japan. Taking account of the fact that the refractive lens is effective for focusing high‐energy X‐rays, the experiment was performed with 35 keV X‐rays. Next, by scanning a specimen through the line foci, this device was used to perform large FOV pixel super‐resolution scanning transmission hard X‐ray microscopy (PSR‐STHXM) with a 780 ± 40 nm spatial resolution within an FOV of 1.64 cm × 1.64 cm (limited by the detector area) and a total scanning time of 4 min. Biomedical implant abutments fabricated via selective laser melting using Ti–6Al–4V medical alloy were measured by PSR‐STHXM, suggesting its unique potential for studying extended and thick specimens. Although the super‐resolution function was realized in one dimension in this study, it can be expanded to two dimensions by aligning a pair of presented devices orthogonally.
    Description: A new X‐ray focusing device generates hundreds of thousands of line foci, periodically spaced in the sub‐micrometre range, with centimetre length. It enables to achieve large FOV pixel super‐resolution scanning transmission hard X‐ray microscopy. image
    Keywords: 502.82 ; inclined refractive X‐ray multi‐lens array ; pixel super‐resolution ; scanning transmission hard X‐ray microscopy ; deep X‐ray lithography and electroplating
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-06-26
    Description: X‐SPEC is a high‐flux spectroscopy beamline at the KIT (Karlsruhe Institute of Technology) Synchrotron for electron and X‐ray spectroscopy featuring a wide photon energy range. The beamline is equipped with a permanent magnet undulator with two magnetic structures of different period lengths, a focusing variable‐line‐space plane‐grating monochromator, a double‐crystal monochromator and three Kirkpatrick–Baez mirror pairs. By selectively moving these elements in or out of the beam, X‐SPEC is capable of covering an energy range from 70 eV up to 15 keV. The flux of the beamline is maximized by optimizing the magnetic design of the undulator, minimizing the number of optical elements and optimizing their parameters. The beam can be focused into two experimental stations while maintaining the same spot position throughout the entire energy range. The first experimental station is optimized for measuring solid samples under ultra‐high‐vacuum conditions, while the second experimental station allows in situ and operando studies under ambient conditions. Measurement techniques include X‐ray absorption spectroscopy (XAS), extended X‐ray absorption fine structure (EXAFS), photoelectron spectroscopy (PES) and hard X‐ray PES (HAXPES), as well as X‐ray emission spectroscopy (XES) and resonant inelastic X‐ray scattering (RIXS).
    Description: X‐SPEC is a high‐flux undulator beamline for electron and X‐ray spectroscopy with an energy range from 70 eV to 15 keV. It offers X‐ray absorption spectroscopy (XAS), extended X‐ray absorption fine structure (EXAFS), photoelectron spectroscopy (PES) and hard X‐ray PES (HAXPES), as well as X‐ray emission spectroscopy (XES) and resonant inelastic X‐ray scattering (RIXS) for in vacuo, in situ and operando sample environments. image
    Keywords: 548 ; undulator beamline ; soft X‐ray ; tender X‐ray ; hard X‐ray ; in situ ; operando ; HAXPES ; RIXS ; XAS ; XES
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...