ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • synchrotron  (2)
  • International Union of Crystallography  (2)
  • Irkutsk : Ross. Akad. Nauk, Sibirskoe Otd., Inst. Zemnoj Kory
  • Krefeld : Geologischer Dienst Nordhein-Westfalen
  • Public Library of Science (PLoS)
  • Wiley
  • 2020-2022  (2)
  • 2005-2009
Collection
Publisher
Years
  • 2020-2022  (2)
  • 2005-2009
Year
  • 1
    Publication Date: 2021-03-30
    Description: Multiple‐Edge Anomalous Diffraction (MEAD) has been applied to various quaternary sulfosalts belonging to the adamantine compound family in order to validate the distribution of copper, zinc and iron cations in the structure. Semiconductors from this group of materials are promising candidates for photovoltaic applications. Their properties strongly depend on point defects, in particular related to cation order–disorder. However, Cu+, Zn2+ and Fe2+ have very similar scattering factors and are all but indistinguishable in usual X‐ray diffraction experiments. Anomalous diffraction utilizes the dependency of the atomic scattering factors f′ and f′′ of the energy of the radiation, especially close to the element‐specific absorption edges. In the MEAD technique, individual Bragg peaks are tracked over an absorption edge. The intensity changes depending on the structure factor can be highly characteristic for Miller indices selected for a specific structural problem, but require very exact measurements. Beamline KMC‐2 at synchrotron BESSY II, Berlin, has been recently upgraded for this technique. Anomalous X‐ray powder diffraction and XAFS compliment the data. Application of this technique confirmed established cation distribution in Cu2ZnSnSe4 (CZTSe) and Cu2FeSnS4 (CFTS). In contrast to the literature, cation distribution in Cu2ZnSiSe4 (CZSiSe) is shown to adopt a highly ordered wurtz‐kesterite structure type.
    Description: Multiple‐Edge Anomalous Diffraction (MEAD) has been applied to various quaternary sulfosalts belonging to the adamantine compound family in order to validate the distribution of copper, zinc and iron cations in the structure. Application of this technique confirms established cation distribution in Cu2ZnSnSe4 (CZTSe) and Cu2FeSnS4 (CFTS), but in Cu2ZnSiSe4 (CZSiSe) the cation distribution is shown to adopt a highly ordered wurtz‐kesterite structure type in contrast to the literature. image
    Keywords: 548 ; synchrotron ; anomalous diffraction ; semiconductor ; MEAD
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-07-02
    Description: A new concept for temporal gating of synchrotron X‐ray pulses based on laser‐induced thermal transient gratings is presented. First experimental tests of the concept yield a diffraction efficiency of 0.18%; however, the calculations indicate a theoretical efficiency and contrast of 〉30% and 10−5, respectively. The full efficiency of the pulse picker has not been reached yet due to a long‐range thermal deformation of the sample after absorption of the excitation laser. This method can be implemented in a broad spectral range (100 eV to 20 keV) and is only minimally invasive to an existing setup.
    Description: A new concept for temporal gating of synchrotron X‐ray pulses based on laser‐induced thermal transient gratings is presented.
    Keywords: 548 ; synchrotron ; time‐resolved ; thermal deformation ; transient grating ; pulse picking
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...