ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (89,771)
  • Springer Nature  (85,041)
  • Frontiers Media  (4,467)
  • American Meteorological Society
  • Blackwell Publishing Ltd
  • Springer Science + Business Media
  • 2020-2022  (17,923)
  • 2005-2009  (44,933)
  • 1960-1964  (26,915)
  • Medicine  (89,771)
Collection
  • Articles  (89,771)
Publisher
Years
Year
  • 11
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: To demonstrate that sequestration A (SeqA) protein binds preferentially to hemimethylated GATC sequences at replication forks and forms clusters in Escherichia coli growing cells, we analysed, by the chromatin immunoprecipitation (ChIP) assay using anti-SeqA antibody, a synchronized culture of a temperature-sensitive dnaC mutant strain in which only one round of chromosomal DNA replication was synchronously initiated. After synchronized initiation of chromosome replication, the replication origin oriC was first detected by the ChIP assay, and other six chromosomal regions having multiple GATC sequences were sequentially detected according to bidirectional replication of the chromosome. In contrast, DNA regions lacking the GATC sequence were not detected by the ChIP assay. These results indicate that SeqA binds hemimethylated nascent DNA segments according to the proceeding of replication forks in the chromosome, and SeqA releases from the DNA segments when fully methylated. Immunofluorescence microscopy reveals that a single SeqA focus containing paired replication apparatuses appears at the middle of the cell immediately after initiation of chromosome replication and the focus is subsequently separated into two foci that migrate to 1/4 and 3/4 cellular positions, when replication forks proceed bidirectionally an approximately one-fourth distance from the replication origin towards the terminus. This supports the translocating replication apparatuses model.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Molecular microbiology 55 (2005), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Our understanding of the Plasmodium mitochondrion and apicoplast has been greatly assisted by the genome sequence project. Sequence data have seeded recent research showing that the apicoplast is  the  site  of  several  anabolic  pathways  including fatty acid synthesis. The discovery of an active apicoplast pyruvate dehydrogenase complex implies this enzyme generates the acetyl-CoA needed for fatty acid synthesis. However, the absence of a corresponding mitochondrial complex suggests that energy generation in Plasmodium is considerably different from pathways described in other eukaryotes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Molecular microbiology 55 (2005), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The σs subunit of RNA polymerase (RNAP) is the master regulator of the general stress response in Escherichia coli. Nevertheless, the selectivity of promoter recognition by the housekeeping σ70-containing and σ5-containing RNAP holoenzymes (Eσ70 and Eσs respectively) is not yet fully clarified, as they both recognize nearly identical −35 and −10 promoter consensus sequences. In this study, we show that in a subset of promoters, Eσs favours the presence of a distal UP-element half-site, and at the same time is unable to take advantage of a proximal half-site or a full UP-element. This is reflected by the frequent occurrence of distal UP-element half-sites in natural σs-dependent promoters and the absence of proximal half-sites. Eσ70, however, exhibits the opposite preference. The presence of the −35 element is a prerequisite for this differential behaviour. In the absence of the −35 element, half or full UP-element sites play no role in sigma selectivity, but the distal subsite leads to an equivalent, if not greater, transcriptional stimulation than the proximal one for both sigma factors. Finally, experiments using single amino acid substitutions of σs indicate that the foundation for this preference lies in an inability of σs to interact with the a subunit C-terminal domain.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Recycling the post-termination ribosomal complex requires the co-ordinated effort of the ribosome, ribosome  recycling  factor  (RRF)  and  elongation  factor EF-G. Although Aquifex aeolicus RRF (aaRRF) binds Escherichia coli ribosomes as efficiently as E. coli RRF, the resulting complex is non-functional and dominant lethal in E. coli, even in the presence of homologous A. aeolicus EF-G. These findings suggest that the E. coli post-termination ribosomal complex with aaRRF lacks functional co-ordination with EF-G required for ribosome recycling. A chimeric EF-G (E. coli domains I–III, A. aeolicus domains IV–V) or an A. aeolicus EF-G with distinct mutations in the domain I–II interface could activate aaRRF. Furthermore, novel mutations that localize to one surface of the  L-shape  structure  of  aaRRF  restored  activity  in E. coli. These aaRRF mutations are spatially distinct from mutations previously described and suggest a novel active centre for coupling EF-G's G domain motor action to ribosome disassembly.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Molecular microbiology 55 (2005), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Sclerotinia sclerotiorum is a filamentous ascomycete phytopathogen able to infect an extremely wide range of cultivated plants. Our previous studies have shown that increases in cAMP levels result in the impairment of the development of the sclerotium, a highly differentiated structure important in the disease cycle of this fungus. cAMP also inhibits the activation of a S. sclerotiorum mitogen-activated protein kinase (MAPK), which we have previously shown to be required for sclerotial maturation; thus cAMP-mediated sclerotial inhibition is modulated through MAPK. However, the mechanism(s) by which cAMP inhibits MAPK remains unclear. Here we demonstrate that a protein kinase A (PKA)-independent signalling pathway probably mediates MAPK inhibition by cAMP. Expression of a dominant negative form of Ras, an upstream activator of the MAPK pathway, also inhibited sclerotial development and MAPK activation, suggesting that a conserved Ras/MAPK pathway is required for sclerotial development. Evidence from bacterial toxins that specifically inhibit the activity of small GTPases, suggested that Rap-1 or Ras is involved in cAMP action. The Rap-1 inhibitor, GGTI-298, restored MAPK activation in the presence of cAMP, further suggesting that Rap-1 is responsible for cAMP-dependent MAPK inhibition. Importantly, inhibition of Rap-1 is able to restore sclerotial development blocked by cAMP. Our results suggest a novel mechanism involving the requirement of Ras/MAPK pathway for sclerotial development that is negatively regulated by a PKA-independent cAMP signalling pathway. Cross-talk between these two pathways is mediated by Rap-1.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The Plasmodium falciparum genome contains genes encoding three α-ketoacid dehydrogenase multienzyme complexes (KADHs) that have central metabolic functions. The parasites possess two distinct genes encoding dihydrolipoamide dehydrogenases (LipDH), which are indispensable subunits of KADHs. This situation is reminiscent of that in plants, where two distinct LipDHs are found in mitochondria and chloroplasts, respectively, that are part of the organelle-specific KADHs. In this study, we show by reverse transcription polymerase chain reaction (RT-PCR) that the genes encoding subunits of all three KADHs, including both LipDHs, are transcribed during the erythrocytic development of P. falciparum. Protein expression of mitochondrial LipDH and mitochondrial branched chain α-ketoacid dihydrolipoamide transacylase in these parasite stages was confirmed by Western blotting. The localization of the two LipDHs to the parasite's apicoplast and mitochondrion, respectively, was shown by expressing the LipDH N-terminal presequences fused to green fluorescent protein in erythrocytic stages of P. falciparum and by immunofluorescent colocalization with organelle-specific markers. Biochemical characterization of recombinantly expressed mitochondrial LipDH revealed that the protein has kinetic and physicochemical characteristics typical of these flavo disulphide oxidoreductases. We propose that the mitochondrial LipDH is part of the mitochondrial α-ketoglutarate dehydrogenase and branched chain α-ketoacid dehydrogenase complexes and that the apicoplast LipDH is an integral part of the pyruvate dehydrogenase complex which occurs only in the apicoplast in P. falciparum.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: EspG, a secreted effector of enteropathogenic Escherichia coli (EPEC), as well as its homologue Orf3, has been shown to disrupt microtubules (MTs) in fibroblasts and non-polarized epithelial cells. The roles of MTs and the effects of MT disruption in these cell types differ significantly. The aim of this study was to investigate the effects of EspG on polarized, host target intestinal epithelial cells. Immunofluorescent labelling of tubulin showed that EPEC caused progressive fragmentation and loss of the MT network in cells harbouring attached organisms. Immunoblots of proteins extracted from EPEC-infected cells showed a corresponding loss of α-tubulin. Type III secretion system (TTSS)-deficient strains had no effect on MT suggesting TTSS dependence. Mutation of espG, but not espF or map, ablated EPEC's effects on MTs for up to 6 h. Ectopic expression of EspG in HeLa cells caused MT disruption. While deletion of espG alone had no effect on the EPEC-induced decrease in transepithelial electrical resistance (TER), mutation of both espG and orf3 significantly delayed the kinetics of this response. Complementation of the double mutant with espG alone restored the kinetics of TER drop to that of wild type. Herein, we describe a previously unrecognized phenotype for the EPEC effectors EspG and Orf3.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Full virulence of the pectinolytic enterobacterium Erwinia chrysanthemi strain 3937 depends on the production in planta of the catechol-type siderophore chrysobactin. Under iron-limited conditions, E. chrysanthemi synthesizes a second siderophore called achromobactin belonging to the hydroxy/carboxylate class of siderophore. In this study, we cloned and functionally characterized a 13 kb long operon comprising seven genes required for the biosynthesis (acs) and extracellular release (yhcA) of achromobactin, as well as the gene encoding the specific outer membrane receptor for its ferric complex (acr). The promoter of this operon was negatively regulated by iron. In a fur null mutant, transcriptional fusions to the acsD and acsA genes were constitutively expressed. Band shift assays showed that the purified E. chrysanthemi Fur repressor protein specifically binds in vitro to the promoter region of the acsF gene confirming that the metalloregulation of the achromobactin operon is achieved directly by Fur. The temporal production of achromobactin in iron-depleted bacterial cultures was determined: achromobactin is produced before chrysobactin and its production decreases as that of chrysobactin increases. Pathogenicity tests performed on African violets showed that achromobactin production contributes to the virulence of E. chrysanthemi. Thus, during infection, synthesis of these two different siderophores allows E. chrysanthemi cells to cope with the fluctuations of iron availability encountered within plant tissues. Interestingly, iron transport mediated by achromobactin or a closely related siderophore probably exists in other phytopathogenic bacterial species such as Pseudomonas syringae.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The minimization of a genome is necessary to identify experimentally the minimal gene set that contains only those genes that are essential and sufficient to sustain a functioning cell. Recent developments in genetic techniques have made it possible to generate bacteria with a markedly reduced genome. We developed a simple system for formation of markerless chromosomal deletions, and constructed and characterized a series of large-scale chromosomal deletion mutants of Escherichia coli that lack between 2.4 and 29.7% of the parental chromosome. Combining deletion mutations changes cell length and width, and the mutant cells with larger deletions were even longer and wider than the parental cells. The nucleoid organization of the mutants is also changed: the nucleoids occur as multiple small nucleoids and are localized peripherally near the envelope. Inhibition of translation causes them to condense into one or two packed nucleoids, suggesting that the coupling of transcription and translation of membrane proteins peripherally localizes chromosomes. Because these phenotypes are similar to those of spherical cells, those may be a consequence of the morphological change. Based on the nucleoid localization observed with these mutants, we discuss the cellular nucleoid dynamics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Molecular microbiology 55 (2005), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Analyses of complete genomes indicate that insertion sequences (ISs) are abundant and widespread in hyperthermophilic archaea, but few experimental studies have measured their activities in these hosts. As a way to investigate the impact of ISs on Sulfolobus genomes, we identified seven transpositionally active ISs in a widely distributed Sulfolobus species, and measured their functional properties. Six of the seven were found to be distinct from previously described ISs of Sulfolobus, and one of the six could not be assigned to any known IS family. A type II ‘Miniature Inverted-repeat Transposable Element’ (MITE) related to one of the ISs was also recovered. Rates of transposition of the different ISs into the pyrEF region of their host strains varied over a 250-fold range. The Sulfolobus ISs also differed with respect to target-site selectivity, although several shared an apparent preference for the pyrEF promoter region. Despite the number of distinct ISs assayed and their molecular diversity, only one demonstrated precise excision from the chromosomal target region. The fact that this IS is the only one lacking inverted repeats and target-site duplication suggests that the observed precise excision may be promoted by the IS itself. Sequence searches revealed previously unidentified partial copies of the newly identified ISs in the Sulfolobus tokodaii and Sulfolobus solfataricus genomes. The structures of these fragmentary copies suggest several distinct molecular mechanisms which, in the absence of precise excision, inactivate ISs and gradually eliminate the defective copies from Sulfolobus genomes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...