ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis  (6)
  • Wiley-Blackwell  (6)
  • American Association of Petroleum Geologists (AAPG)
  • Cell Press
  • Springer Nature
  • 2020-2022
  • 2010-2014  (6)
  • 1945-1949
Collection
Years
Year
  • 1
    Publication Date: 2020-12-15
    Description: Seismogram envelopes recorded at Campi Flegrei caldera show diffusive characteristics as well as steep amplitude increases in the intermediate and late coda, which can be related to the presence of a non-uniformly scattering medium. In this paper, we first show the results of a simulation with a statistical model considering anisotropic scattering interactions, in order to match coda-envelope duration and shape.We consider as realistic parameters for a volcanic caldera the presence of large square root velocity fluctuations (10 per cent) and two typical correlation lengths for such an heterogeneous crust, a = 0.1 and 1 km. Then, we propose the inclusion of a diffusive boundary condition in the stochastic description of multiple scattering, in order to model intermediate and late coda intensities, and particularly the sharp intensity peaks at some stations in the caldera. Finally, we show that a reliable 2-D synthetic model of the envelopes produced by earthquakes vertically sampling a small region can be obtained including a single drastic change of the scattering properties of the volcano, that is, a caldera rim of radius 3 km, and sections varying between 2 and 3 km. These boundary conditions are diffusive, which signifies that the rim must have more scattering potential than the rest of the medium, with its diffusivity 2–3 orders of magnitude lower than the one of the background medium, so that the secondary sources on its interface(s) could enhance coda intensities. We achieve a good first-order model of high-frequency (18 Hz) envelope broadening adding to the Monte Carlo solution for the incident flux the secondary source effects produced by a closed annular boundary, designed on the caldera rim signature at 1.5 km depth. At lower frequencies (3 Hz) the annular boundary controls the intermediate and late coda envelope behaviour, in a way similar to an extended diffusive source. In our interpretation, the anomalous intensities observed at several stations and predicted by the final Monte Carlo solutions are mainly due to the diffusive transmission reflection from a scattering object of increased scattering power, and are controlled by its varying thickness.
    Description: This work was carried out under the HPC-Europa2 project (project number: 228398) with the support of the European Commission Capacities Area-Research Infrastructures Initiative. We thank the whole staff at EPCC (Edinburgh Parallel Computing Centre) in Edinburgh and particularly Dr. Adam Carter for their help in both developing and parallelizing the code. The challenging comments and suggestions of the editor and two anonymous reviewers helped both in focusing the aim and in overcoming the strong limits of a previous version of the paper.
    Description: Published
    Description: 1102–1119
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: restricted
    Keywords: Numerical solutions; ; Seismic anisotropy; ; Seismic attenuation ; Seismic tomography ; Wave scattering and diffraction ; Calderas ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Local and regional seismicity jointly recorded by two dense small aperture arrays, one installed at surface and one at 1.3 km depth, constitutes an interesting data set useful for coda observations. Applying array techniques to earthquakes recorded at the two arrays we measure slowness, backazimuth and correlation coefficient of the coherent coda wave signals in five frequency bands in the range 1–10 Hz. Slowness distributions show marked differences between surface and underground, with slow signals at surface (slowness greater than 1.0 s km−1) that are not observed underground. We interpret these coherent signals as surface waves produced by the interaction of body waves with the free surface characterized by rough topography. The backazimuth values measured in the frequency bands centred at 1.5 and 3 Hz are almost uniformly distributed between 0 and 360◦, while those measured at higher frequencies show different distributions between surface and underground. On the contrary, the earthquake envelopes show very similar coda shapes between surface and underground recordings, with an almost constant coda-amplitude ratio (between 4 and 8) in a wide frequency range.
    Description: Published
    Description: 367-371
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: JCR Journal
    Description: restricted
    Keywords: Coda waves ; Wave scattering and diffraction ; Wave propagation ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: In this work, we present regional maps of the inverse intrinsic quality factor (Qi −1), the inverse scattering quality factor (Qs −1) and total inverse quality factor (Qt −1) for the volcanic environment of Deception Island (Antarctica). Our attenuation study is based on diffusion approximation, which permits us to obtain the attenuation coefficients for every single couple source-receiver separately. The data set used in this research is derived from an active seismic experiment using more than 5200 offshore shots (air guns) recorded at 32 onshore seismic stations and four ocean bottom seismometers. To arrive at a regional distribution of these values, we used a new mapping technique based on a Gaussian space probability function. This approach led us to create ‘2-D probabilistic maps’ of values of intrinsic and scattering seismic attenuation. The 2-D tomographic images confirm the existence of a high attenuation body below an inner bay of Deception Island. This structure, previously observed in 2-D and 3-D velocity tomography of the region, is associated with a massive magma reservoir. Magnetotelluric studies reach a similar interpretation of this strong anomaly. Additionally, we observed areas with lower attenuation effects that bear correlation with consolidated structures described in other studies and associated with the crystalline basement of the area. Our calculations of the transport mean-free path and absorption length for intrinsic attenuation gave respective values of ≈950 m and 5 km, which are lower than the values obtained in tectonic regions or volcanic areas such as Tenerife Island. However, as observed in other volcanic regions, our results indicate that scattering effects dominate strongly over the intrinsic attenuation.
    Description: This work has been partially supported by the Spanish project Ephestos, CGL2011–29499-C02–01, by the EU project EC-FP7 MEDiterranean SUpersite Volcanoes (MED-SUV), by the Basque Government researcher training program BFI09.277 and by the Regional project ‘Grupo de Investigaci´on en Geof´ısica y Sismolog´ıa de la Junta de Andaluc´ıa, RNM104.’ Edoardo del Pezzo was partly supported by DPC-INGV projects UNREST SPEED and V2 (Precursori).
    Description: Published
    Description: 1957-1969
    Description: 3.1. Fisica dei terremoti
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: restricted
    Keywords: Seismic attenuation; ; Seismic tomography ; Volcano seismology ; Wave scattering and diffraction ; Wave propagation ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The peculiar source characteristics of long-period seismic events (time persistency of the source, low-frequency peaks in the source spectrum, absence of high-frequency radiation) prevent the formation of a definite high-frequency coda in the seismograms. In contrast, this is well formed in volcano–tectonic quakes. For this reason, the widely used duration magnitude scale that is based on the proportionality between the energy and the coda duration cannot be used for long-period estimation. In observatory practice, the long-period magnitude is sometimes estimated using the same duration magnitude scale, leading to confusing results. In this report, we show a new method to estimate the magnitude of long-period events that generally occur for volcanoes, with some application examples from data for Mt Etna (Italy), Colima Volcano (Mexico) and Campi Flegrei (Italy).
    Description: Published
    Description: 911-919
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: restricted
    Keywords: Earthquake source observations; ; Volcano monitoring ; Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: The coda normalization method is one of the most used methods in the inference of attenuation parameters Qα and Qβ . Since, in this method, the geometrical spreading exponent γ is an unknown model parameter, the most part of studies assumes a fixed γ , generally equal to 1. However γ and Q could be also jointly inferred from the non-linear inversion of codanormalized logarithms of amplitudes, but the trade-off between γ and Q could give rise to unreasonable values of these parameters. To minimize the trade-off between γ and Q, an inversion method based on a parabolic expression of the coda-normalization equation has been developed. The method has been applied to the waveforms recorded during the 1997 Umbria-Marche seismic crisis. The Akaike criterion has been used to compare results of the parabolic model with those of the linear model, corresponding to γ = 1. A small deviation from the spherical geometrical spreading has been inferred, but this is accompanied by a significant variation of Qα and Qβ values. For almost all the considered stations, Qα smaller than Qβ has been inferred, confirming that seismic attenuation, in the Umbria-Marche region, is controlled by crustal pore fluids.
    Description: Published
    Description: 1726-1731
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: restricted
    Keywords: Seismic attenuation ; coda normalization method ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: The complex volcanic system of Tenerife Island is known to have a highly heterogeneous character, as recently confirmed by velocity tomography.We present new information derived from intrinsic quality factor inverse maps (Qi −1), scattering quality factor inverse maps (Qs −1) and total quality factor inverse maps (Qt −1) obtained for the same region. The data set used in this work is the result of the analysis of an active seismic experiment carried out, using offshore shots (air guns) recorded at over 85 onshore seismic stations. The estimates of the attenuation parameters are based on the assumption that the seismogram energy envelopes are determined by seismic energy diffusion processes occurring inside the island. Diffusion model parameters, proportional to Qi −1 and to Qs −1, are estimated from the inversion of the energy envelopes for any source–receiver couple. They are then weighted with a new graphical approach based on a Gaussian space probability function, which allowed us to create ‘2-D probabilistic maps’ representing the space distribution of the attenuation parameters. The 2-D images obtained reveal the existence of a zone in the centre of the island characterized by the lowest attenuation effects. This effect is interpreted as highly rigid and cooled rocks. This low-attenuation region is bordered by zones of high attenuation, associated with the recent historical volcanic activity. We calculate the transport mean free path obtaining a value of around 4 km for the frequency range 6–12 Hz. This result is two orders of magnitude smaller than values calculated for the crust of the Earth. An absorption length between 10 and 14 km is associated with the average intrinsic attenuation parameter. These values, while small in the context of tectonic regions, are greater than those obtained in volcanic regions such as Vesuvius or Merapi. Such differences may be explained by the magnitude of the region of study, over three times larger than the aforementioned study areas. This also implies deeper sampling of the crust, which is evidenced by a change in the values of seismic attenuation. One important observation is that scattering attenuation dominates over the intrinsic effects, Qi being at least twice the value of Qs.
    Description: This work has been partially supported by the Spanish project Ephestos, CGL2011-29499-C02-01, by the EU project EC-FP7 MEDiterranean SUpersite Volcanoes (MED-SUV), by the Basque Government researcher training program BFI09.277 and by the Regional project ‘Grupo de Investigaci´on en Geof´ısica y Sismolog´ıa de la Junta de Andaluc´ıa, RNM104’. EdP has been partly supported by DPC-INGV projects UNREST SPEED and V2 (Precursori).
    Description: Published
    Description: 1942-1956
    Description: 3.1. Fisica dei terremoti
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Seismic attenuation ; ; Seismic tomography; ; Volcano seismology ; Wave propagation. ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...