ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Astrophysics
  • 2020-2022  (4)
  • 2010-2014  (1,348)
  • 2005-2009  (791)
  • 1
    Publication Date: 2022-05-26
    Description: Reexploring convection and its various transitions to chaotic behavior were the central themes of GFD 1981. Our principal lecturer, Dr. Edward A. Spiegel, provided both a rich historical picture and stimulating hours at the current frontiers of this topic. Before the summer was out his research lecture on "A Tale of Two Methods" elegantly merged Pierre Coullet's canonical formalism for studying dynamical systems in a central manifold and the more traditional two-timing amplitude expansions near critical points. Other lecture sequences on convection and its relation to simpler dynamical systems ranged from the fine presentations of John Guckenheimer on bifurcation theory to Fritz Busse's survey of his immense contributions to our understanding of nonlinear convection. The list of other lectures found on the following pages attests to our summer-long exposure to convection in the ocean, the atmosphere, the earth's core and mantle, and in the sun. August brought lectures on new observations of convection in the laboratories of physicists. Albert Libchaber's precise experiments on the many routes convection can take to turbulence, with parallel laboratory and numerical experiments described by J. Gollub and E. Siggia, added much to our language of inquiry.
    Description: Office of Naval Research under Contract N00014-81-G-0089.
    Keywords: Convection ; Astrophysics
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-01-22
    Description: TESS launched 18 April 2018 to conduct a two-year, near all-sky survey for at least 50 small, nearby exoplanets for which masses can be ascertained and whose atmospheres can be characterized by ground- and space-based follow-on observations. TESS has completed its survey of the southern hemisphere and begun its survey of the northern hemisphere, identifying 〉1000 candidate exoplanets and unveiling a plethora of exciting non-exoplanet astrophysics results, such as asteroseismology, asteroids, and supernova. The TESS Science Processing Operations Center (SPOC) processes the data downlinked every two weeks to generate a range of data products hosted at the Mikulski Archive for Space Telescopes (MAST). For each sector (~1 month) of observations, the SPOC calibrates the image data for both 30-min Full Frame Images (FFIs) and up to 20,000 pre-selected 2-min target star postage stamps. Data products for the 2-min targets include simple aperture photometry and systematic error-corrected flux time series. The SPOC also conducts searches for transiting exoplanets in the 2-min data for each sector and generates Data Validation time series and associated reports for each transit-like feature identified in the search. Multi-sector searches for exoplanets are conducted periodically to discover longer period planets, including those in the James Webb Continuous Viewing Zone (CVZ), which are observed for up to one year. Starting with Sector 8, scattered light from the Earth and Moon contaminated significant portions of the data in each orbit. We have developed algorithms for automated identification of the scattered light features at the individual target level. Previously, data for all stars on a CCD affected by scattered light were manually excluded. The automated flagging will allow us to retain significantly more data for stars that are not affected by the scattered light even though it is occurring elsewhere on the CCD. We also discuss enhancements to the SPOC pipeline and the newly available FFI light curves. The TESS Mission is funded by NASA's Science Mission Directorate as an Astrophysics Explorer Mission.
    Keywords: Astrophysics
    Type: ARC-E-DAA-TN76812 , American Astronomical Society Meeting; Jan 04, 2020 - Jan 08, 2020; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-01-21
    Description: Habitable Exoplanet Observatory Mission (HabEx) will image & spectroscopically characterize planetary systems in the habitable zone around nearby sun-like stars. Additionally, HabEx will perform a broad range of general astrophysics science enabled by a 150 to 1700 nm spectral range and 3 x 3 arc-minute FOV. Critical to achieving the HabEx science goals is a large, ultra-stable telescope. The baseline HabEx telescope is a 4-m off-axis unobscured three-mirror-anastigmatic design with diffraction limited performance at 400 nm and wavefront stability of picometers per mK. These specifications are driven by science requirements. STOP (structural thermal optical performance) analysis predicts that the baseline telescopes opto-mechanical design meets its specified performance tolerances.
    Keywords: Astrophysics
    Type: MSFC-E-DAA-TN75627 , American Astronomical Society Meeting; Jan 04, 2020 - Jan 08, 2020; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-01-16
    Description: No abstract available
    Keywords: Astrophysics
    Type: MSFC-E-DAA-TN76707 , American Astronomical Society Meeting; Jan 04, 2020 - Jan 08, 2020; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-01-15
    Description: No abstract available
    Keywords: Astrophysics
    Type: MSFC-E-DAA-TN76756 , American Astronomical Society Meeting; Jan 04, 2020 - Jan 08, 2020; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-24
    Description: We quantified primary volatiles in comet C/2009 Pl (Garradd) through pre- and post-perihelion observations acquired during its apparition in 2011-12 [1,2,3]. Detected volatiles include H2O, CO, CH4, C2H2, C2H6, HCN, NH3, H2CO, and CH3OH. We present production rates and chemical abundance ratios (relative to water) for all species, and I-D spatial profiles for multiple primary volatiles. We discuss these findings in the context of an emerging taxonomy based on primary volatiles in comets [4]. We used three spectrometer/telescope combinations. On UT 20ll August 7 (Rh 2.4 AU) and September 17-21 (Rh 2.0 AU), we used CRIRES at ESO's Very Large Telescope (VLT) [1]. On September 8 and 9 (Rh 2.1 AU), we used NIRSPEC at Keck-2 and CSHELL at IRTF [2]. Using NIRSPEC on October 13 and 2012 January 08 (Rh 1.83 and 1.57 AU, respectively), we detected nine primary volatiles pre-perihelion, and six post-perihelion [3]. CO was enriched in Garradd while C2H2 was strongly depleted. C2H6 and CH3OH displayed abundances close to those measured for the majority of Oort cloud comets observed to date. The high fractional abundance of CO identifies comet C12009 P1 as a CO-rich comet. Spatial profiles revealed notable differences among individual primary species. Given the relatively large heliocentric distance of C/2009 Pl, we explored the effect of water not being fully sublimated within our field of view and we identi$, the "missing" water fraction needed to reconcile the retrieved abundance ratios with the mean values found for "organics-normal" comets.
    Keywords: Astrophysics
    Type: GSFC.ABS.6792.2012 , 44th Annual Meeting AAS Division of Planetary Sciences; Oct 14, 2012 - Oct 19, 2012; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-28
    Description: Studies of molecular hot cores and protostellar environments have shown that the observed abundance of gas-phase acetylene (C2H2) cannot be matched by chemical models without the inclusion of C2H2 molecules subliming from icy grain mantles. Searches for infrared (IR) spectral features of solid-phase acetylene are under way, but few laboratory reference spectra of C2H2 in icy mixtures, which are needed for spectral fits to observational data, have been published. Here, we report a systematic study of the IR spectra of condensed-phase pure acetylene and acetylene in ices dominated by carbon monoxide (CO), carbon dioxide (CO2), methane (CH4), and water (H2O). We present new spectral data for these ices, including band positions and intrinsic band strengths. For each ice mixture and concentration, we also explore the dependence of acetylene's nu5-band position (743 cm-1, 13.46 micrometers) and FWHM on temperature. Our results show that the nu5 feature is much more cleanly resolved in ices dominated by non-polar and low-polarity molecules, specifically CO, CO2, and CH4, than in mixtures dominated by H2O-ice. We compare our laboratory ice spectra with observations of a quiescent region in Serpens.
    Keywords: Astrophysics
    Type: The Astrophysical Journal (ISSN 0004-4637x); 748; 2; 95-95
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-28
    Description: NASA Laboratory Astrophysics Workshop 2006, is the fourth in a series of workshops held at four year intervals, to assess the laboratory needs of NASA's astrophysics missions - past, current and future. Investigators who need laboratory data to interpret their observations from space missions, theorists and modelers, experimentalists who produce the data, and scientists who compile databases have an opportunity to exchange ideas and understand each other's needs and limitations. The multi-wavelength character of these workshops allows cross-fertilization of ideas, raises awareness in the scientific community of the rapid advances in other fields, and the challenges it faces in prioritizing its laboratory needs in a tight budget environment. Currently, we are in the golden age of Space Astronomy, with three of NASA s Great Observatories, Hubble Space Telescope (HST), Chandra X-Ray Observatory (CXO), and Spitzer Space Telescope (SST), in operation and providing astronomers and opportunity to perform synergistic observations. In addition, the Far Ultraviolet Spectroscopic Explorer (FUSE), XMM-Newton, HETE-2, Galaxy Evolution Explorer (GALEX), INTEGRAL and Wilkinson Microwave Anisotropy Probe (WMAP), are operating in an extended phase, while Swift and Suzaku are in their prime phase of operations. The wealth of data from these missions is stretching the Laboratory Astrophysics program to its limits. Missions in the future, which also need such data include the James Webb Space Telescope (JWST), Space Interferometry Mission (SIM), Constellation-X (Con-X), Herschel, and Planck. The interpretation of spectroscopic data from these missions requires knowledge of atomic and molecular parameters such as transition probabilities, f-values, oscillator strengths, excitation cross sections, collision strengths, which have either to be measured in the laboratory by simulating space plasma and interactions therein, or by theoretical calculations and modeling. Once the laboratory data are obtained, a key step to making them available to the observer is the creation and maintenance of critically compiled databases. Other areas of study, that are important for understanding planet formation, and for detection of molecules that are indicators of life, are also supported by the Laboratory Astrophysics program. Some examples are: studies of ices and dust grains in a space environment; nature and evolution of interstellar carbon-rich dust; and polycyclic aromatic hydrocarbons. In addition, the program provides an opportunity for the investigation of novel ideas, such as simulating radiative shock instabilities in plasmas, in order to understand jets observed in space. A snapshot of the currently funded program, mission needs, and relevance of laboratory data to interpreting observations, will be obtained at this workshop through invited and contributed talks and poster papers. These will form the basis for discussions in splinter groups. The Science Organization Committee will integrate the results of the discussions into a coherent White Paper, which will provide guidance to NASA in structuring the Laboratory Astrophysics program in subsequent years, and also to the scientific community in submitting research proposals to NASA for funding.
    Keywords: Astrophysics
    Type: Proceedings of the NASA Laboratory Astrophysics Workshop; 17-25; NASA/CP-2006-214549
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-27
    Description: The canonical hard state is associated with emission from all three fundamental accretion components: the accretion disk, the hot accretion disk corona and the jet. On top of these, the hard state also hosts very rich temporal variability properties (low frequency QPOs in the PDS, time lags, long time scale evolution). Our group has been working on the major questions of the hard state both observationally (with mult i-wavelength campaigns using RXTE, Swift, Suzaku, Spitzer, VLA, ATCA, SMARTS) and theoretically (through jet models that can fit entire SEDs). Through spectral and temporal analysis we seek to determine the geometry of accretion components, and relate the geometry to the formation and emission from a jet. In this presentation I will review the recent contributions of our group to the field, including the Swift results on the disk geometry at low accretion rates, the jet model fits to the hard state SEDs (including Spitzer data) of GRO J1655-40, and the final results on the evolution of spectral (including X-ray, radio and infrared) and temporal properties of elected black holes in the hard states. I will also talk about impact of ASTROSAT to the science objective of our group.
    Keywords: Astrophysics
    Type: Proceedings of the 2nd Kolkata Conference on Observational Evidence for Black Holes in the Universe; 1053; 201
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-27
    Description: We present results from a survey designed to probe the star formation properties of 32 damped Ly alpha systems (DLAs) at redshifts of approximately 2.7. By using the "double-DLA" technique that eliminates the glare of the bright background quasars, we directly measure the rest-frame FUV flux from DLAs and their neighbouring galaxies. At the position of the absorbing gas, we place stringent constraints on the unobscured star formation rates (SFRs) of DLAs to 2 sigma limits of psi less than 0.090.27 solar mass yr(exp 1), corresponding to SFR surface densities sigma(sub sfr) less than 10(exp 2.6)10(exp 1.5) solar mass yr(exp 1) kpc(exp 2). The implications of these limits for the star formation law, metal enrichment, and cooling rates of DLAs are examined. By studying the distribution of impact parameters as a function of SFRs for all the galaxies detected around these DLAs, we place new direct constraints on the bright end of the UV luminosity function of DLA hosts. We find that less than or equal to 13% of the hosts have psi greater than or equal to 2 solar mass yr(exp 1) at impact parameters b(sub dla) less than or equal to (psi/solar mass yr(exp 1))(exp 0.8) + 6 kpc, differently from current samples of confirmed DLA galaxies. Our observations also disfavor a scenario in which the majority of DLAs arise from bright LBGs at distances 20 less than or equal to b(sub dla) less than 100 kpc. These new findings corroborate a picture in which DLAs do not originate from highly star forming systems that are coincident with the absorbers, and instead suggest that DLAs are associated with faint, possibly isolated, star-forming galaxies. Potential shortcomings of this scenario and future strategies for further investigation are discussed.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN19019
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...