ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (101,791)
  • American Chemical Society  (101,692)
  • American Institute of Physics (AIP)
  • Copernicus Publications
  • 2020-2024  (1,837)
  • 2020-2022  (99,954)
Collection
Publisher
Years
Year
Journal
  • 1
    facet.materialart.
    Unknown
    Copernicus Publications
    In:  EPIC3Scientific Drilling, Copernicus Publications, 28, pp. 1-27, ISSN: 1816-3459
    Publication Date: 2020-12-01
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-05-25
    Description: Smith-Johnsen et al. (The Cryosphere, 14, 841–854, https://doi.org/10.5194/tc-14-841-2020, 2020) model the effect of a potential hotspot on the Northeast Greenland Ice Stream (NEGIS). They argue that a heat flux of at least 970 mW m−2 is required to have initiated or to control NEGIS. Such an exceptionally high heat flux would be unique in the world and is incompatible with known geological processes that can raise the heat flux. Fast flow at NEGIS must thus be possible without the extraordinary melt rates invoked in Smith-Johnsen et al. (2020).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Copernicus Publications
    In:  EPIC3EGU General Assembly 2021, online, 2021-04-19-2021-04-30Lacustrine oxygen isotope records from biogenic silica (δ18OBSi) – a global compilation and review, Göttingen, Copernicus Publications
    Publication Date: 2021-06-20
    Description: Isotope records are crucial for proxy-model comparison in paleoclimatology because of their advantage of being directly comparable with isotope-enabled paleoclimate model outputs. Oxygen isotopes (δ18O) are commonly measured on carbonates (i.e. ostracods, authigenic carbonates) and biogenic silica (mainly diatoms). Oxygen isotopes in lacustrine carbonates (δ18OCaCO3) have been studied extensively for several decades, yet they are subject to complex species-dependent fractionation processes and not available globally. Lacustrine oxygen isotope records from biogenic silica (δ18OBSi), on the other hand, likely do not display species-dependent fractionation effects (or only very minor) and offer insight even in data-sparse regions devoid of carbonates, such as the Arctic. To date, more than 70 lacustrine δ18OBSi records have been published. These case studies have been complemented with additional efforts addressing climatic and hydrological backgrounds, laboratory techniques and possible species-dependent fractionation as well as deposition and dissolution effects. Here, we present the first comprehensive review and global compilation of lacustrine δ18OBSi records, with explicit regard to their individual lake basin parameters. With this work, we aim at contributing to bridging the gap between modelling and isotope geochemistry approaches regarding terrestrial archives in paleoclimatology. Departing from hitherto prevalent case studies, we assess what we can learn from lacustrine δ18OBSi records globally, considering lake basin characteristics, spatial and temporal coverage as well as hydrological background information. This improves both the usability of δ18OBSi for proxy-model comparison and our understanding of the general constraints for interpreting lacustrine δ18OBSi records.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-03-15
    Description: During the Late Pleistocene–Holocene, the Ross Sea Ice Shelf exhibited strong spatial variability in relation to the atmospheric and oceanographic climatic variations. Despite being thoroughly investigated, the timing of the ice sheet retreat from the outer continental shelf since the Last Glacial Maximum (LGM) still remains controversial, mainly due to a lack of sediment cores with a robust chronostratigraphy. For this reason, the recent recovery of sediments containing a continuous occurrence of calcareous foraminifera provides the important opportunity to create a reliable age model and document the early deglacial phase in particular. Here we present a multiproxy study from a sediment core collected at the Hallett Ridge (1800m of depth), where significant occurrences of calcareous planktonic and benthic foraminifera allow us to document the first evidence of the deglaciation after the LGM at about 20.2 ka. Our results suggest that the co-occurrence of large Neogloboquadrina pachyderma tests and abundant juvenile forms reflects the beginning of open-water conditions and coverage of seasonal sea ice. Our multiproxy approach based on diatoms, silicoflagellates, carbon and oxygen stable isotopes on N. pachyderma, sediment texture, and geochemistry indicates that abrupt warming occurred at approximately 17.8 ka, followed by a period of increasing biological productivity. During the Holocene, the exclusive dominance of agglutinated benthic foraminifera suggests that dissolution was the main controlling factor on calcareous test accumulation and preservation. Diatoms and silicoflagellates show that ocean conditions were variable during the middle Holocene and the beginning of the Neoglacial period at around 4 ka. In the Neoglacial, an increase in sand content testifies to a strengthening of bottom-water currents, supported by an increase in the abundance of the tycopelagic fossil diatom Paralia sulcata transported from the coastal regions, while an increase in ice-rafted debris suggests more glacial transport by icebergs.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Chemical Society
    In:  EPIC3Environmental Science & Technology, American Chemical Society, 54(24), pp. 15893-15903, ISSN: 0013-936X
    Publication Date: 2021-04-08
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-07-26
    Description: Meridional atmospheric transport is an important process in the climate system and has implications for the availability of heat and moisture at high latitudes. Near-surface cold and warm temperature advection over the ocean in the context of extratropical cyclones additionally leads to important air–sea exchange. In this paper, we investigate the impact of these air–sea fluxes on the stable water isotope (SWI) composition of water vapour in the Southern Ocean’s atmospheric boundary layer. SWIs serve as a tool to trace phase change processes involved in the atmospheric water cycle and, thus, provide important insight into moist atmospheric processes associated with extratropical cyclones. Here we combine a 3-month ship-based SWI measurement data set around Antarctica with a series of regional high-resolution numerical model simulations from the isotope-enabled numerical weather prediction model COSMOiso. We objectively identify atmospheric cold and warm temperature advection associated with the cold and warm sector of extratropical cyclones, respectively, based on the air–sea temperature difference applied to the measurement and the simulation data sets. A Lagrangian composite analysis of temperature advection based on the COSMOiso simulation data is compiled to identify the main processes affecting the observed variability of the isotopic signal in marine boundary layer water vapour in the region from 35 to 70◦ S. This analysis shows that the cold and warm sectors of extratropical cyclones are associated with contrasting SWI signals. Specifically, the measurements show that the median values of δ18O and δ2H in the atmospheric water vapour are 3.8 ‰ and 27.9 ‰ higher during warm than during cold advection. The median value of the second-order isotope variable deuterium excess d, which can be used as a measure of non-equilibrium processes during phase changes, is 6.4 ‰ lower during warm than during cold advection. These characteristic isotope signals during cold and warm advection reflect the opposite air–sea fluxes associated with these large-scale transport events. The trajectory-based analysis reveals that the SWI signals in the cold sector are mainly shaped by ocean evaporation. In the warm sector, the air masses experience a net loss of moisture due to dew deposition as they are advected over the relatively colder ocean, which leads to the observed low d. We show that additionally the formation of clouds and precipitation in moist adiabatically ascending warm air parcels can decrease d in boundary layer water vapour. These findings illustrate the highly variable isotopic composition in water vapour due to contrasting air–sea interactions during cold and warm advection, respectively, induced by the circulation associated with extratropical cyclones. SWIs can thus potentially be useful as tracers for meridional air advection and other characteristics associated with the dynamics of the storm tracks over interannual timescales.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Copernicus Publications
    In:  EPIC3Solid Earth, Copernicus Publications, 11, pp. 397-417
    Publication Date: 2020-03-31
    Description: Plate tectonic modellers often rely on the identifi- cation of “break-up” markers to reconstruct the early stages of continental separation. Along the Iberian-Newfoundland margin, so-called break-up markers include interpretations of old magnetic anomalies from the M series, as well as the “J anomaly”. These have been used as the basis for plate tectonic reconstructions are based on the concept that these anomalies pinpoint the location of first oceanic lithosphere. However, uncertainties in the location and interpretation of break-up markers, as well as the difficulty in dating them precisely, has led to plate models that differ in both the tim- ing and relative palaeo-positions of Iberia and Newfoundland during separation. We use newly available seismic data from the Southern Newfoundland Basin (SNB) to assess the suitability of com- monly used break-up markers along the Newfoundland mar- gin for plate kinematic reconstructions. Our data show that basement associated with the younger M-series magnetic anomalies is comprised of exhumed mantle and magmatic additions and most likely represents transitional domains and not true oceanic lithosphere. Because rifting propagated northward, we argue that M-series anomaly identifications further north, although in a region not imaged by our seis- mic, are also unlikely to be diagnostic of true oceanic crust beneath the SNB. Similarly, our data also allow us to show that the high amplitude of the J Anomaly is associated with a zone of exhumed mantle punctuated by significant volcanic additions and at times characterized by interbedded volcanics and sediments. Magmatic activity in the SNB at a time coin- ciding with M4 (128 Ma) and the presence of SDR packages onlapping onto a basement fault suggest that, at this time, plate divergence was still being accommodated by tectonic faulting. We illustrate the differences in the relative positions of Iberia and Newfoundland across published plate reconstruc- tions and discuss how these are a direct consequence of the uncertainties introduced into the modelling procedure by the use of extended continental margin data (dubious magnetic anomaly identifications, break-up unconformity interpreta- tions). We conclude that a different approach is needed for constraining plate kinematics of the Iberian plate pre-M0 times.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Copernicus Publications
    In:  EPIC3EGU General Assembly 2020 | Sharing Geoscience Online, Online, 2020-05-04-2020-05-08Copernicus Publications
    Publication Date: 2020-05-11
    Description: The onset and high upstream ice surface velocities of the North East Greenland Ice Stream (NEGIS) are not yet well reproducible in ice sheet models. A major uncertainty remains the understanding of basal sliding and a parameterization of basal conditions. In this study, we assess the slow-flowing part of the NEGIS in a systematic analysis of the basal conditions and investigate the increased ice flow. We analyze the spectral basal roughness in correlation with basal return power from an airborne radar survey with AWIs ultra-wideband radar system in 2018 and compare our results with current ice flow geometry and ice surface flow. We observe a roughness anisotropy where the ice stream widens, indicating a change from a smooth and soft bed to a harder bedrock as well as the evolution of elongated subglacial landforms. In addition, at the upstream part of the NEGIS we find a clear zoning of the bedrock return power, indicating an increased water content at the base of the ice stream. At the downstream part, we observe an increased bedrock return power throughout the entire width of the ice stream and outside its margins, indicating enhanced melting and the distribution of basal water beyond the shear zones.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Copernicus Publications
    In:  EPIC3Earth System Dynamics, Copernicus Publications, 11(4), pp. 1153-1194, ISSN: 2190-4979
    Publication Date: 2021-02-01
    Description: Abstract. Various observational estimates indicate growing mass loss at Antarctica's margins as well as heavier precipitation across the continent. Simulated future projections reveal that heavier precipitation, falling on Antarctica, may counteract amplified iceberg discharge and increased basal melting of floating ice shelves driven by a warming ocean. Here, we test how the ansatz (implementation in a mathematical framework) of the precipitation boundary condition shapes Antarctica's sea level contribution in an ensemble of ice sheet simulations. We test two precipitation conditions: we either apply the precipitation anomalies from CMIP5 models directly or scale the precipitation by the air temperature anomalies from the CMIP5 models. In the scaling approach, it is common to use a relative precipitation increment per degree warming as an invariant scaling constant. We use future climate projections from nine CMIP5 models, ranging from strong mitigation efforts to business-as-usual scenarios, to perform simulations from 1850 to 5000. We take advantage of individual climate projections by exploiting their full temporal and spatial structure. The CMIP5 projections beyond 2100 are prolonged with reiterated forcing that includes decadal variability; hence, our study may underestimate ice loss after 2100. In contrast to various former studies that apply an evolving temporal forcing that is spatially averaged across the entire Antarctic Ice Sheet, our simulations consider the spatial structure in the forcing stemming from various climate patterns. This fundamental difference reproduces regions of decreasing precipitation despite general warming. Regardless of the boundary and forcing conditions applied, our ensemble study suggests that some areas, such as the glaciers from the West Antarctic Ice Sheet draining into the Amundsen Sea, will lose ice in the future. In general, the simulated ice sheet thickness grows along the coast, where incoming storms deliver topographically controlled precipitation. In this region, the ice thickness differences are largest between the applied precipitation methods. On average, Antarctica shrinks for all future scenarios if the air temperature anomalies scale the precipitation. In contrast, Antarctica gains mass in our simulations if we apply the simulated precipitation anomalies directly. The analysis reveals that the mean scaling inferred from climate models is larger than the commonly used values deduced from ice cores; moreover, it varies spatially: the highest scaling is across the East Antarctic Ice Sheet, and the lowest scaling is around the Siple Coast, east of the Ross Ice Shelf. The discrepancies in response to both precipitation ansatzes illustrate the principal uncertainty in projections of Antarctica's sea level contribution.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-04-12
    Description: We derive recent surface mass balance (SMB) estimates from airborne radar observations along the iSTAR traverse (2013, 2014) at Pine Island Glacier (PIG), West Antarctica. Ground-based neutron probe measurements provide information of snow and firn density with depth at 22 locations and were used to date internal annual reflection layers. The 2005 layer was traced for a total distance of 2367 km to determine annual mean SMB for the period 2005–2014. Using complementary SMB estimates from two regional climate models, RACMO2.3p2 and MAR, and a geostatistical kriging scheme, we determine a regional-scale SMB distribution with similar main characteristics to that determined for the period 1985–2009 in previous studies. Local departures exist for the northern PIG slopes, where the orographic precipitation shadow effect appears to be more pronounced in our observations, and the southward interior, where the SMB gradient is more pronounced in previous studies. We derive total mass inputs of 79.9 +/- 19.2 and 82.1 +/- 19.2 Gt yr-1 to the PIG basin based on complementary ASIRAS–RACMO and ASIRAS–MAR SMB estimates, respectively. These are not significantly different to the value of 78.3 +/- 6.8 Gt yr-1 for the period 1985–2009. Thus, there is no evidence of a secular trend at decadal scales in total mass input to the PIG basin. We note, however, that our estimated uncertainty is more than twice the uncertainty for the 1985–2009 estimate on total mass input. Our error analysis indicates that uncertainty estimates on total mass input are highly sensitive to the selected krige methodology and assumptions made on the interpolation error, which we identify as the main cause for the increased uncertainty range compared to the 1985–2009 estimates.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...