ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth
  • 05.04. Instrumentation and techniques of general interest
  • Volcano seismology
  • 2020-2024  (55)
  • 2020-2022  (67)
Collection
Years
Year
  • 1
    Publication Date: 2024-07-05
    Description: La revisione da parte degli analisti del BSI della sismicità registrata in Italia dal 1 gennaio al 30 aprile 2023 ha riguardato tutti i terremoti di magnitudo M≥1.5, mentre i parametri dei terremoti di magnitudo inferiore a tale soglia sono quelli calcolati in tempo reale, nella SALA DI SORVEGLIANZA SISMICA DI ROMA. I terremoti più forti (M≥3.5) e pochi altri di particolare interesse [vedi Marchetti et al., 2016, DOI: 10.4401/ag- 6116], sono stati revisionati dagli analisti del BSI, mediamente nelle 24 ore successive al loro accadimento.
    Description: Istituto Nazionale di Geofisica e Vulcanologia - Dipartimento di Protezione Civile
    Description: Published
    Description: OST5 Verso un nuovo Monitoraggio
    Keywords: Sismicità italiana ; sequenze sismiche ; 04. Solid Earth
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-07-02
    Description: La revisione da parte degli analisti del BSI della sismicità registrata in Italia dal 1 settembre al 31 dicembre 2022 ha riguardato tutti i terremoti di magnitudo M≥1.5, mentre i parametri dei terremoti di magnitudo inferiore a tale soglia sono quelli calcolati in tempo reale, nella SALA DI SORVEGLIANZA SISMICA DI ROMA. I terremoti più forti (M≥3.5) e pochi altri di particolare interesse [vedi Marchetti et al., 2016, DOI: 10.4401/ag-6116], sono stati revisionati dagli analisti del BSI, mediamente nelle 24 ore successive al loro accadimento.
    Description: Istituto Nazionale di Geofisica e Vulcanologia - Dipartimento di Protezione Civile
    Description: Published
    Description: OST5 Verso un nuovo Monitoraggio
    Keywords: Sismicità italiana ; sequenze sismiche ; 04. Solid Earth
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-05-16
    Description: Abstract: Non-invasive techniques, such as close-range photogrammetry (CRP) and 3D ultrasonic tomography complemented with optical and scanning electron microscopy and mercury porosimetry, were applied to characterize the carbonate rock samples of the Calcari di Cagliari formation. The integrated approach started with the computation of high-resolution 3D models of the carbonate samples using the CRP technique to produce 3D high-resolution models texturized both with natural colors and intensity. Starting from the 3D models from previous techniques, a 3D ultrasonic tomography on each rock sample was accurately planned and carried out in order to detect the elastic properties of such rocks and relate them to textural heterogeneity or internal defects. The results indicate that the relationship between longitudinal velocity and rock properties is complex even in the same carbonate formation. Understanding the relationship between the geomatic and geophysical responses in the investigated rock properties, such as textural characteristics and especially structure and geometry of pores, type of pores, tortuosity and cementing material, is important for many practical applications and especially in the diagnostic process of the conservation state of monumental structures. The integration of the above non-invasive techniques complemented by petrographical–petrophysical data proved to be a powerful method to associate each lithotype with a different susceptibility to degradation. The results presented in this paper demonstrate that the proposed integrated use of complementary methodologies would guarantee the reproducibility of the measurements both at the laboratory and field scale for the monitoring in time of the rock condition while giving a useful contribution in making decisions on an appropriate remedial strategy.
    Description: Published
    Description: 501
    Description: OSA5: Energia e georisorse
    Description: JCR Journal
    Keywords: carbonate rocks ; petrographic data ; photogrammetry ; ultrasonic tomography ; integrated interpretation ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-30
    Description: Laser interferometry enables to remotely measure microscopical length changes of deployedtelecommunication cables originating from earthquakes. Long reach and compatibility with datatransmission make it attractive for the exploration of both remote regions and highly-populated areaswhere optical networks are pervasive. However, interpretation of its response still suffers from a limitednumber of available datasets. We systematically analyze 1.5 years of acquisitions on a land-basedtelecommunication cable in comparison to co-located seismometers, with successful detection ofevents in a broad magnitude range, including very weak ones. We determine relations between acable’s detection probability and the events magnitude and distance, introducing spectral analysis offiber data as a tool to investigate earthquake dynamics. Our results reveal that quantitative analysis ispossible, confirming applicability of this technique both for the global monitoring of our planet and thedaily seismicity monitoring of populated areas, in perspective exploitable for civilian protection
    Description: Published
    Description: 178
    Description: OST2 Deformazione e Hazard sismico e da maremoto
    Description: OST5 Verso un nuovo Monitoraggio
    Description: JCR Journal
    Keywords: Seismic monitoring ; Telecom fiber network ; Seismic detection ; Optical Fiber ; Laser interferometry ; 04.06. Seismology ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-04-23
    Description: The integrated use of non-destructive geomatic and geophysical techniques such as close-range digital photogrammetry, laser scanner techniques, thermography, sonic and ultrasonic methods, resistivity, etc... for the diagnostics of the stone building materials of architectural structures has become increasingly dependent on the integration of different disciplines of applied research. As is well known many historic monuments are characterized by severe damage due to temporal degradation, problems caused by differential settlements of the foundations and various types of natural hazards. Therefore it is of great interest to test and develop effective, integrated non invasive procedures to detect the conservation state of the building materials of historic structures, and identify and prevent their potential vulnerability in order to preserve their intrinsic characteristics for a long time. For extensive applications, as well as for investigations on monuments or large architectural elements, scanning and digital high resolution images are particularly useful, thanks to their limited cost, high production and relatively simple reproducibility of the tests. These techniques give useful information on the shallow conditions of the investigated materials. Geophysical techniques such as the ultrasonic and resistivity methods are non-invasive and are considered the most appropriate to evaluate the internal structure and assess the quality of the stone materials of the architectural heritage. This paper presents an integrated approach that combines advanced geomatic survey procedures, such as close-range photogrammetry (CRP) based on high resolution images and Terrestrial Laser Scanner (TLS) techniques with a few geophysical techniques such as the ultrasonic and resistivity ones in order to test the effectiveness of the integrated approach in providing an effective diagnosis of stone building materials in the Basilica di San Saturnino (Cagliari – Italy). This Basilica is the oldest monument of the town of Cagliari (Italy) and represents an interesting synthesis of different construction techniques with heterogeneous stone materials of different origins. CRP and TLS were applied to the investigated elements with the aim of obtaining a natural colour texturized 2D-3D model with a calibrated scale and coordinates. The geometrical anomaly and reflectivity maps derived from the data of the CRP-TLS survey show the presence of some anomalies worthy of attention, but they were referred to the shallow materials. A further investigation on site using the ultrasonic pulse velocity (UPV) and electrical resistivity techniques were performed to investigate the materials in depth. The results of the CRP and TLS techniques allowed the best design of the ultrasonic and electrical techniques and also proved to be useful in the data interpretation phase.
    Description: Published
    Description: Vienna - Austria
    Description: OSA5: Energia e georisorse
    Keywords: non-destructive geomatic and geophysical techniques ; diagnostics of the stone building materials ; architectural structures ; historic monuments ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-04-23
    Description: Nel mese di maggio 2022 è iniziato uno sciame sismico, di breve durata, che ha interessato una piccola area del Chianti fiorentino a circa 15 km a sud dalla città di Firenze. I due terremoti più energetici hanno avuto una magnitudo momento pari a 3.7; nonostante la magnitudo modesta, tali eventi sono stati avvertiti distintamente fino a distanze di diverse decine di chilometri, e hanno destato preoccupazione nella popolazione prossima all’area epicentrale. Inoltre, dato l’ingente patrimonio artistico presente nel capoluogo toscano, questo episodio ha sollevato interrogativi sulla sua vulnerabilità anche a scuotimenti del suolo di piccola entità. Al fine di migliorare le conoscenze sulla ubicazione e le dimensioni delle strutture sismogenetiche attive in prossimità di Firenze, l’Istituto Nazionale di Geofisica e Vulcanologia (INGV) è intervenuto nell’area interessata dallo sciame attraverso il Gruppo Operativo (GO) di emergenza SISMIKO. Il 4 maggio, giorno successivo all’inizio dello sciame, cinque stazioni sismiche mobili sono state installate a distanza ravvicinata dall’area epicentrale, e integrate nel sistema di monitoraggio permanente INGV. Questo lavoro descrive le procedure relative a: (i) l’installazione, la manutenzione e la disinstallazione della rete sismica mobile; (ii) la gestione e il controllo di qualità dei dati acquisiti. Infine, vengono presentate, in riferimento al contesto sismotettonico dell’area, le caratteristiche spaziali e l’evoluzione temporale dello sciame, che ha presentato una piccola ripresa nell’attività sismica ad agosto del 2022, con un terremoto di magnitudo locale 2.7 e successive repliche.
    Description: Published
    Description: 1-26
    Description: OST5 Verso un nuovo Monitoraggio
    Description: JCR Journal
    Keywords: Sciame sismico ; Reti sismiche di pronto intervento ; Chianti fiorentino ; Seismic swarm ; Rapid response seismic networks ; 04.06. Seismology ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-04-23
    Description: The National Institute of Geophysics and Volcanology (INGV, Istituto Nazionale di Geofisica e Vulcanologia), is an italian public research institute established in 1999. Since its inception, the mission of INGV included seismic surveillance and earthquake monitoring in Italy. INGV is part of the Civil Defence system (Margheriti et al., 2021). INGV has offices in different parts of Italy and operates the Italian National Seismic Network (Rete Sismica Nazionale—RSN; INGV Seismological Data Centre, 2006) and other networks at national scale (Michelini et al., 2017). INGV also operates a temporary seismic network infrastructure, a pool of instruments used to densify seismic networks for scientific experiments or in response to damaging earthquakes and to increase monitoring capabilities during seismic sequences. SISMIKO is the operational task force of INGV whose core purpose is to rapidly deploy temporary seismic stations in response to moderate—large magnitude earthquakes or in areas where a seismic sequence is causing concerns and/or scientific interest (Moretti et al., 2016). By reducing the spatial distance between the seismic stations, temporary deployments can improve the RSN detection capability and the accuracy of the earthquake locations. SISMIKO was established in 2015 by Lucia Margheriti and Milena Moretti, so they became responsible for INGV emergency deployments of the temporary networks. SISMIKO involves INGV technicians and researchers from all over Italy, from Milano to Catania (see acknowledgments), grouped together by common interest technical and scientific issues. SISMIKO coordinates all INGV groups working on seismic emergencies (Figure 1). The data acquired by the SISMIKO temporary networks, are made available to the scientific community, without any restrictions, via italian node of the European Integrated Data Archive portal (EIDA1; Danecek et al., 2021). Datasets are archived in near real-time in the “Standard for the Exchange of Earthquake Data (SEED)” format and have an associated Digital Object Identifier (DOI). The data are used for monitoring, surveillance and for scientific research. Since its establishment, SISMIKO has installed seven temporary seismic networks, including the one used to monitor the 2016–2018 seismic sequence in central Italy (Moretti et al., 2016). The most recent activations of SISMIKO were in May and November 2022: Chianti-Fiorentino (Piccinini et al., 2022; 2023) and North Marche coast (D’Alema et al., 2022b), respectively. The following section briefly describes the history of the INGV emergency mobile network.
    Description: Published
    Description: 1146579
    Description: OST5 Verso un nuovo Monitoraggio
    Description: JCR Journal
    Keywords: SISMIKO ; Seismic emergency ; Temporary seismic network ; Real time transmission ; Seismology ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Elsevier
    In:  Comment to “Shallow portion of an active geothermal system revealed by multidisciplinary studies: The case of Le Biancane (Larderello, Italy)” by Granieri D., Mazzarini F., Cerminara M., Calusi B., Scozzari A., Menichini M., and Lelli M. (2023) Luca Bolognesi Geothermics 113 (2023) 102753 https://doi.org/10.1016/j.geothermics.2023.102753
    Publication Date: 2024-04-09
    Description: Reply to the comment by Luca Bolognesi
    Description: Reply to the comment by Luca Bolognesi
    Description: Published
    Description: 102754
    Description: OSA5: Energia e georisorse
    Description: JCR Journal
    Keywords: 04. Solid Earth
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-04-09
    Description: The natural park of Le Biancane is located in the southern sector of the Larderello-Travale geothermal field (LTGF). It extends over an approximately 100,000 m2 area where the impermeable caprock is locally absent and deep fluids may directly reach the surface. Through a multidisciplinary approach including measurements of soil CO2 flux (total output of 11.5 t day􀀀 1), soil temperature (average 34.4 ◦C), stable isotope and chemical data on fluids from fumaroles (dominated by a mixture of geothermal gases and air or gases from air-saturated meteoric water), and structural analysis of the formation outcropping, we found that anomalous CO2 emissions are positively correlated with shallow temperature anomalies. These are in restricted locations adjacent to vents and fumaroles, where a network of well-connected fractures (preferentially NW-SE and NE-SW orientated and with steep dips) drains efficiently allowing upward migration of the deep fluids and the energy toward the surface.
    Description: INGV Project RL 2021 - AGEREMUS
    Description: Published
    Description: 102616
    Description: OSA5: Energia e georisorse
    Description: JCR Journal
    Keywords: Larderello geothermal field ; Fracture network connectivity ; Diffuse CO2 soil degassing ; Thermal infrared images ; Hydrothermal gas ; 04. Solid Earth
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-03-27
    Description: At the end of the summer 2021, an increase in CO2 emissions at Vulcano brought an increase in the alert level and, consequently, to the upgrade of the monitoring activities by increasing the number of instruments deployed and the rate of the surveys. One of the new devices installed was a geodetic GNSS mobile network for a real-time and high-frequency monitoring of ground deformation, to increase the detail with respect to the existing permanent network. The mobile stations were initially installed at the northern base of the La Fossa crater, where the highest values of soil degassing were recorded. Two stations were co-located with gravimeters, in order to compare and integrate the data. After this very first period of testing, the mobile GNSS array has been reconfigured, to investigate the mud pool area. Thus, four stations were installed around the degassing area, one of them being in the same site of the gravimeter. Data has been acquired at 1 Hz rate and is used for the weekly reporting to Civil Protection. It was the first experience of a light and quick-to-install geodetic real-time and high-rate GNSS mobile network in this area, and it was the occasion for testing its performance, as well as different approaches for the real-time kinematic (RTK) differential positioning in order to find the most suitable for the ongoing phenomena. Furthermore, direct data communication and archiving in the institutional database have been implemented for immediate querying from the control room tools. We report the experiences collected during the installation phase, site selection, RTK approaches, and ground motion and provide the daily raw data in RINEX format for any future precise postprocessing for the mid- to long-term analyses.
    Description: Published
    Description: 36
    Description: OSV3: Sviluppo di nuovi sistemi osservazionali e di analisi ad alta sensibilità
    Description: JCR Journal
    Keywords: Deformation ; Satellite geodesy ; 04.08. Volcanology ; 05.06. Methods ; 04.03. Geodesy ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...