ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • phylogeny  (2)
  • Frontiers Media  (1)
  • Wiley  (1)
  • Blackwell Publishing Ltd
  • Nature Publishing Group
  • Public Library of Science
  • 2020-2024  (1)
  • 2020-2022  (1)
  • 1960-1964
Collection
Publisher
Years
  • 2020-2024  (1)
  • 2020-2022  (1)
  • 1960-1964
Year
  • 1
    Publication Date: 2020-06-30
    Description: Volcanic and geothermal areas are hot and often acidic environments that emit geothermal gasses, including H2, CO and CO2. Geothermal gasses mix with air, creating conditions where thermoacidophilic aerobic H2- and CO-oxidizing microorganisms could thrive. Here, we describe the isolation of two Kyrpidia spormannii strains, which can grow autotrophically by oxidizing H2 and CO with oxygen. These strains, FAVT5 and COOX1, were isolated from the geothermal soils of the Favara Grande on Pantelleria Island, Italy. Extended physiology studies were performed with K. spormannii FAVT5, and showed that this strain grows optimally at 55°C and pH 5.0. The highest growth rate is obtained using H2 as energy source (μmax 0.19 ± 0.02 h-1, doubling time 3.6 h). K. spormannii FAVT5 can additionally grow on a variety of organic substrates, including some alcohols, volatile fatty acids and amino acids. The genome of each strain encodes for two O2-tolerant hydrogenases belonging to [NiFe] group 2a hydrogenases and transcriptome studies using K. spormannii FAVT5 showed that both hydrogenases are expressed under H2 limiting conditions. So far no Firmicutes except K. spormannii FAVT5 have been reported to exhibit a high affinity for H2, with a Ks of 327 ± 24 nM. The genomes of each strain encode for one putative CO dehydrogenase, belonging to Form II aerobic CO dehydrogenases. The genomic potential and physiological properties of these Kyrpidia strains seem to be quite well adapted to thrive in the harsh environmental volcanic conditions.
    Description: Published
    Description: Article 951
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: CO ; H2 ; Kyrpidia spormannii ; [NiFe]-hydrogenases ; phylogeny ; thermoacidophilic ; 05.09. Miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-06-06
    Description: Aim: The efficiency of animal-mediated seed dispersal is threatened by the decline of animal populations, especially in tropical forests. We hypothesise that large-seeded plants with animal-mediated dispersal tend to have limited geographic ranges and face an increased risk of extinction due to the potential decline in seed dispersal by large-bodied fruit-eating and seed-dispersing animals (frugivores). Location: Atlantic Forest, Brazil, South America. Taxon: Angiosperms. Methods: First, we collected dispersal-related traits (dispersal syndrome, fruit size, and seed size), growth form (tree, climber, and other) and preferred vegetation type (open and closed) data for 1052 Atlantic Forest plant species. Next, we integrated these with occurrence records, extinction risk assessments, and phylogenetic trees. Finally, we performed phylogenetic generalised least squares regressions to test the direct and interactive effects of dispersal-related traits and vegetation type on geographical range size. Results: Large-seeded species had smaller range sizes than small-seeded species, but only for species with animal-mediated dispersal, not for those dispersed by abiotic mechanisms. However, plants with abiotic dispersal had overall smaller range sizes than plants with animal-mediated dispersal. Furthermore, we found that species restricted to forests had smaller ranges than those occurring in open or mixed vegetation. Finally, at least 29% of the Atlantic Forest flora is threatened by extinction, but this was not related to plant dispersal syndromes. Main Conclusions: Large-seeded plants with animal-mediated dispersal may be suffering from dispersal limitation, potentially due to past and ongoing defaunation of large-bodied frugivores, leading to small range sizes. Other factors, such as deforestation and fragmentation, will probably modulate the effects of dispersal on range size, and ultimately extinction. Our study sheds light on the relationship between plant traits, mutualistic interactions, and distribution that are key to the functioning of tropical forests.
    Keywords: defaunation ; extinction risk ; frugivory ; phylogeny ; range size ; seed dispersal ; tropical forest
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...