ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3)
  • Currents  (2)
  • 04.04. Geology  (1)
  • American Meteorological Society  (2)
  • Springer Nature  (1)
  • Blackwell Publishing Ltd
  • Molecular Diversity Preservation International
  • Periodicals Archive Online (PAO)
  • Springer Science + Business Media
  • 2020-2024  (2)
  • 2020-2022  (1)
  • 1960-1964
Collection
  • Articles  (3)
Publisher
Years
Year
  • 1
    Publication Date: 2021-09-22
    Description: The Italian Apennines are among the most important sources of freshwater for several Italian regions. With evidences of deep CO2-rich fluids intruding into aquifers in the nearby central-southern Apennines, a thorough investigation into the geochemistry of groundwater became critical to ensure the water quality in the area. Here, we show the main hydrogeochemical processes occurring in the Matese Massif (MM) aquifer through the investigation of 98 water samples collected from springs and water wells. All waters were classified as HCO3 type with Ca dominance (from 50% up to 97%) and variable amount of Mg (from 1% up to 49%). A multivariate statistical approach through the application of the factor analysis (FA) highlighted three main hydrogeochemical processes: (i) water-carbonate rock interactions mostly enhanced in peripheral areas of the MM by CO2 deep degassing; (ii) addition of NaCl-rich components linked to recharging process and to water mixing processes of the groundwater with a thermal component relatively rich in Cl, Na, and CO2; (iii) anthropogenic activities influencing groundwater composition at the foothills of MM. Furthermore, the first detailed TDIC, pCO2, and δ13C-TDIC distribution maps of the MM area have been created, which track chemical and isotopic anomalies in several peripheral areas (Pratella, Ailano, and Telese) throughout the region. These maps systematically highlight that the greater the amount of dissolved carbon occurs the heavier the C isotope enrichment, especially in the peripheral areas. Conversely, spring waters emerging at higher altitudes within MM are only slightly mineralized and associated with δ13C-TDIC values mainly characterized by recharging processes with the addition of biogenic carbon during the infiltration process through the soil.
    Description: Published
    Description: 46614–46626
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: 2IT. Laboratori analitici e sperimentali
    Description: JCR Journal
    Keywords: CO2 degassing; Factor analysis; Mineral springs; Total dissolved inorganic carbon; δ13C-TDIC ; 03.02. Hydrology ; 04.04. Geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-25
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(11), (2022): 2841–2852, https://doi.org/10.1175/jpo-d-22-0025.1.
    Description: Prediction of rapid intensification in tropical cyclones prior to landfall is a major societal issue. While air–sea interactions are clearly linked to storm intensity, the connections between the underlying thermal conditions over continental shelves and rapid intensification are limited. Here, an exceptional set of in situ and satellite data are used to identify spatial heterogeneity in sea surface temperatures across the inner core of Hurricane Sally (2020), a storm that rapidly intensified over the shelf. A leftward shift in the region of maximum cooling was observed as the hurricane transited from the open gulf to the shelf. This shift was generated, in part, by the surface heat flux in conjunction with the along- and across-shelf transport of heat from storm-generated coastal circulation. The spatial differences in the sea surface temperatures were large enough to potentially influence rapid intensification processes suggesting that coastal thermal features need to be accounted for to improve storm forecasting as well as to better understand how climate change will modify interactions between tropical cyclones and the coastal ocean.
    Description: This research was made possible by the NOAA RESTORE Science Program (NA17NOS4510101 and NA19NOS4510194) and the NASA Physical Oceanography program (80NSSC21K0553 and WBS 281945.02.25.04.67) and NOAA IOOS program via GCOOS (NA16NOS0120018). The authors declare that they have no competing interests.
    Keywords: Seas/gulfs/bays ; Atmosphere–ocean interaction ; Currents ; Tropical cyclones ; Buoy observations ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-01
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(8), (2022): 1927-1943, https://doi.org/10.1175/jpo-d-21-0124.1.
    Description: The Galápagos Archipelago lies on the equator in the path of the eastward flowing Pacific Equatorial Undercurrent (EUC). When the EUC reaches the archipelago, it upwells and bifurcates into a north and south branch around the archipelago at a latitude determined by topography. Since the Coriolis parameter (f) equals zero at the equator, strong velocity gradients associated with the EUC can result in Ertel potential vorticity (Q) having sign opposite that of planetary vorticity near the equator. Observations collected by underwater gliders deployed just west of the Galápagos Archipelago during 2013–16 are used to estimate Q and to diagnose associated instabilities that may impact the Galápagos Cold Pool. Estimates of Q are qualitatively conserved along streamlines, consistent with the 2.5-layer, inertial model of the EUC by Pedlosky. The Q with sign opposite of f is advected south of the Galápagos Archipelago when the EUC core is located south of the bifurcation latitude. The horizontal gradient of Q suggests that the region between 2°S and 2°N above 100 m is barotropically unstable, while limited regions are baroclinically unstable. Conditions conducive to symmetric instability are observed between the EUC core and the equator and within the southern branch of the undercurrent. Using 2-month and 3-yr averages, e-folding time scales are 2–11 days, suggesting that symmetric instability can persist on those time scales.
    Description: This work was supported by the National Science Foundation (Grants OCE-1232971 and OCE-1233282), the NASA Earth and Space Science Fellowship Program (Grant 80NSSC17K0443), and the Global Ocean Monitoring and Observing Program of the National Oceanographic and Atmospheric Administration (NA13OAR4830216). Color maps are from Thyng et al. (2016).
    Description: 2023-02-01
    Keywords: Currents ; In situ oceanic observations ; Instability ; Mixing ; Ocean dynamics ; Pacific Ocean ; Potential vorticity ; Tropics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...