ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • 04.04. Geology  (2)
  • Frontiers S.A.  (1)
  • Springer Nature  (1)
  • American Meteorological Society
  • Blackwell Publishing Ltd
  • Molecular Diversity Preservation International
  • Periodicals Archive Online (PAO)
  • Springer Science + Business Media
  • 2020-2024  (1)
  • 2020-2022  (1)
  • 1960-1964
Collection
  • Articles  (2)
Publisher
Years
  • 2020-2024  (1)
  • 2020-2022  (1)
  • 1960-1964
Year
  • 1
    Publication Date: 2021-09-22
    Description: The Italian Apennines are among the most important sources of freshwater for several Italian regions. With evidences of deep CO2-rich fluids intruding into aquifers in the nearby central-southern Apennines, a thorough investigation into the geochemistry of groundwater became critical to ensure the water quality in the area. Here, we show the main hydrogeochemical processes occurring in the Matese Massif (MM) aquifer through the investigation of 98 water samples collected from springs and water wells. All waters were classified as HCO3 type with Ca dominance (from 50% up to 97%) and variable amount of Mg (from 1% up to 49%). A multivariate statistical approach through the application of the factor analysis (FA) highlighted three main hydrogeochemical processes: (i) water-carbonate rock interactions mostly enhanced in peripheral areas of the MM by CO2 deep degassing; (ii) addition of NaCl-rich components linked to recharging process and to water mixing processes of the groundwater with a thermal component relatively rich in Cl, Na, and CO2; (iii) anthropogenic activities influencing groundwater composition at the foothills of MM. Furthermore, the first detailed TDIC, pCO2, and δ13C-TDIC distribution maps of the MM area have been created, which track chemical and isotopic anomalies in several peripheral areas (Pratella, Ailano, and Telese) throughout the region. These maps systematically highlight that the greater the amount of dissolved carbon occurs the heavier the C isotope enrichment, especially in the peripheral areas. Conversely, spring waters emerging at higher altitudes within MM are only slightly mineralized and associated with δ13C-TDIC values mainly characterized by recharging processes with the addition of biogenic carbon during the infiltration process through the soil.
    Description: Published
    Description: 46614–46626
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: 2IT. Laboratori analitici e sperimentali
    Description: JCR Journal
    Keywords: CO2 degassing; Factor analysis; Mineral springs; Total dissolved inorganic carbon; δ13C-TDIC ; 03.02. Hydrology ; 04.04. Geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-09
    Description: This study provides a lithospheric-scale model along the Ionian Subduction zone in Southern Italy, contributing to the seismotectonic investigation of a region which is affected by relevant historical seismicity. The study employs gravity forward modelling to build the geo-structural model along a composite, NWSE trending transect extending from the Ionian to the Tyrrhenian Sea, including the Aeolian arc and the Calabro-Peloritan onshore. Through a multidisciplinary approach, we propose new interpretations of three 2D deep-seismic reflection profiles across the study area. Such interpretative profiles are used as constraints to model the observed Bouguer gravity anomalies providing upper and lower crust geometries. Whilst a tomographic model provides constraints for the lithospheric and asthenospheric modelling. The entire workflow is constrained by literature data about Moho geometry, deep seismicity and tomographic images that are integrated to determine the subducting slab geometry. The proposed model of the entire subducting system reasonably fits the observed gravity field and is coherent with the first-order geological and geophysical constraints. The modelling results in updated Tyrrhenian and Ionian Moho depth, subducting slab geometry and location, and densities of the main units, providing valuable input about the composition and geometry of the Calabrian arc structures.
    Description: PRIN-2017 (project #2017KT2MKE_003)
    Description: Published
    Description: 1259831
    Description: OST1 Alla ricerca dei Motori Geodinamici
    Description: JCR Journal
    Keywords: Calabrian Arc (Italy) ; subducion complex ; gravity forward modeling, crustal model ; Ionian Subduction zone ; Tyrrhenian back-arc basin-calabrian arc-accretionary wedge system ; Southern Italy ; 04.01. Earth Interior ; 04.07. Tectonophysics ; 04.04. Geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...