ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2011-08-24
    Description: We have studied the evolution of the velocity distribution function of a test population of electrons in the solar corona and inner solar wind region, using a recently developed kinetic model. The model solves the time dependent, linear transport equation, with a Fokker-Planck collision operator to describe Coulomb collisions between the 'test population' and a thermal background of charged particles, using a finite differencing scheme. The model provides information on how non-Maxwellian features develop in the distribution function in the transition region from collision dominated to collisionless flow. By taking moments of the distribution the evolution of higher order moments, such as the heat flow, can be studied.
    Keywords: Solar Physics
    Type: International Solar Wind 8 Conference; 30; NASA-CR-199940
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The outflow of coronal plasma into interplanetary space is a consequence of the coronal heating process. Therefore the formation of the corona and the acceleration of the solar wind should be treated as a single problem. Traditionally the mass or particle flux emanating from the extended corona has been thought of as being determined by the coronal temperature or scale height and the coronal (base) density. This argument follows from considerations of the momentum balance of the corona-wind system from which one obtains models of a close to hydrostatic corona out to the critical point where the flow becomes supersonic. With this approach to the acceleration of the wind is has been difficult to reconcile the relatively small variation observed in the proton flux at 1 AU with the predicted exponential dependence of the proton flux on the coronal temperature. In this talk we would like to emphasize another approach in which coronal energetics play the primary role. The deposition of energy into the corona through some 'mechanical' energy flux is balanced by the various energy sinks available to the corona and the sum of these processes determine the coronal structure, i.e. its temperature and density. The corona loses energy through heat conduction into the transition region, through radiative losses, and through the gravitational potential energy and kinetic energy put into the solar wind itself. We will show from a series of models of the chromosphere transition region-corona-solar wind system that most of the energy deposited in a magnetically open region will go into the solar wind, with roughly half going into kinetic energy and half into lifting the plasma out of the solar gravity field. The coronal base density will adjust itself in such a way that the heat conductive flux flowing into the transition region is radiated away in the upper chromosphere. The coronal temperature is set by the requirements that most of the deposited energy goes into accelerating the solar wind; the coronal scale height will adjust itself so that the solar wind energy losses conform to the amplitude of the input energy. These processes are modified by the 'mode' of energy deposition, and we will show the effects on coronal structure of changing the parameters describing coronal heating as well as the effects of including a helium fluid in the models. However, the location, scale height and/or form of the energy deposition (i.e. heating or direct acceleration) are not too important for the solar wind, the coronal density and temperature structure will vary with the 'mode' of energy deposition, but the solar wind mass flux depends mainly on the amplitude of the energy flux.
    Keywords: Solar Physics
    Type: International Solar Wind 8 Conference; 29; NASA-CR-199940
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: Coronal heating is at the origin of the X-ray emission and mass loss from the sun and many other stars. While different scenarios have been proposed to explain the heating of magnetically confined and open regions of the corona, they must all rely on the transfer, storage and dissipation of the abundant energy present in photospheric motions. Here we focus on theories which rely on magnetic fields and electric currents both for the energy transfer and storage in the corona. The dissipation of this energy, whether in the form of reconnection in current sheets (nanoflare?) or the dissipation of MHD waves, depends crucially on the development of extremely small scales in the coronal magnetic field, where kinetic effects are likely to be fundamental. The question of whether coronal heating and flares may be viewed respectively as the macroscopic, low-energy average and the high-energy, temporally intermittent aspect of the same underlying driven, dissipative, turbulent system is also addressed, with emphasis placed on the main observational and theoretical stumbling blocks in the way of a confinement or disproof of such a conjecture.
    Keywords: Solar Physics
    Type: ; 28
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2011-08-24
    Description: In weakly dissipative media governed by the magnetohydrodynamics (MHD) equations, any efficient mechanism of energy dissipation requires the formation of small scales. The possibility to produce small scales has been studied by Malara et al. in the case of MHD disturbances propagating in an incompressible and inhomogeneous medium, for a strictly 2D geometry. We extend the work of Malara et al. to include both compressibility and the third component for vector quantities. Using numerical simulations we show that, when an Alfven wave propagates in a compressible nonuniform medium, the two dynamical effects responsible for the small scales formation in the incompressible case are still at work: energy pinching and phase-mixing. Moreover, the interaction between the initial Alfven wave and the inhomogeneity gives rise to the formation of compressible perturbations (fast and slow waves or a static entropy wave). Some of these compressive fluctuations are subject to the steepening of the wave front and become shock waves, which are extremely efficient in dissipating their energy, their dissipation being independent of the Reynolds number. A rough estimate of the typical times which the various dynamical processes take to produce small scales and then to dissipate the energy show that these times are consistent with those required to dissipate inside the solar corona the energy of Alfven waves of photospheric origin.
    Keywords: Solar Physics
    Type: International Solar Wind 8 Conference; 27; NASA-CR-199940
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2011-08-24
    Description: The National Solar Observatory synoptic program provides an extensive and unique data base of high-resolution full-disk observations of the line-of-sight photospheric magnetic fields and of the He I lambda 10830 equivalent width. These data have been taken nearly daily for more than 21 years since 1974 and provide the opportunity to investigate the behavior of the magnetic fields in the photosphere and those inferred for the corona spanning on the time scales of a day to that of a solar cycle. The intensity of structures observed in He I lambda 10830 are strongly modulated by overlying coronal radiation; areas with low coronal emission are generally brighter in He I lambda 10830, while areas with high coronal emission are darker. For this reason, He I lambda 10830 was selected in the mid-1970's as way to identify and monitor coronal holes, magnetic fields with an open configuration, and the sources of high-speed solar wind streams. The He I lambda 10830 spectroheliograms also show a wide variety of other structures from small-scale, short-lived dark points (less than 30 arc-sec, hours) to the large-scale, long-lived two 'ribbon' flare events that follow the filament eruptions (1000 arc-sec, days). Such structures provide clues about the connections and changes in the large-scale coronal magnetic fields that are rooted in concentrations of magnetic network and active regions in the photosphere. In this paper, what observations of the photospheric magnetic field and He I lambda 10830 can tell us about the short- and long-term evolution of the coronal magnetic fields will be discussed, focussing on the quiet Sun and coronal holes. These data and what we infer from them will be compared with direct observations of the coronal structure from the Yohkoh Soft X-ray Telescope.
    Keywords: Solar Physics
    Type: International Solar Wind 8 Conference; 27; NASA-CR-199940
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The high speed solar wind, which is associated with coronal holes and unipolar interplanetary magnetic field, has now been observed in situ beyond 0.3 a.u. and at latitudes up to 80 degrees. Its important characteristics are that it is remarkably steady in terms of flow properties and composition and that the ions, especially minor species, are favored in terms of heating and acceleration. We have proposed that the high speed wind, with its associated coronal holes, forms the basic mode of solar wind flow. In contrast, the low speed wind is inherently non-stationary, filamentary and not in equilibrium with conditions at the coronal base. It is presumably the result of continual reconfigurations of the force-free magnetic field in the low-latitude closed corona which allow trapped plasma to drain away along transiently open flux tubes. Observations of high speed solar wind close to its source are hampered by the essential heterogeneity of the corona, even at sunspot minimum. In particular it is difficult to determine more than limits to the density, temperature and wave amplitude near the coronal base as a result of contamination from fore- and back-ground plasma. We interpret the observations as indicating that the high speed solar wind originates in the chromospheric network, covering only about 1% of the surface of the sun, where the magnetic field is complex and not unipolar. As a result of small-scale reconnection events in this 'furnace', Alfven waves are generated with a flat spectrum covering the approximate range 10 kHz to 10 Hz. The plasma is likely to be produced as a result of downwards thermal conduction and possibly photoionization at the top of the low density chromospheric interface to the furnace, thus controlling the mass flux in the wind. The immediate source of free (magnetic) energy is in the form of granule-sized loops which are continually carried into the network from the sides. The resulting wave spectrum is such that energy can be efficiently transferred to the ions within a few solar radii of the base of the corona, favoring heavy species and creating stable, fast solar wind.
    Keywords: Solar Physics
    Type: International Solar Wind 8 Conference; 31; NASA-CR-199940
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2011-08-24
    Description: Observations of solar Lyman alpha have been interpreted as indicating that the polar mass flux density is lower than the equatorial average. This led Lallement et al (1986) to make a parametric study of solar wind acceleration, along the lines of earlier the Munro-Jackson study (1977), in which they concluded that uncertainties in the polar mass flux were large enough to be consistent with two extreme opposites: (1) a substantial energy supply beyond classical thermal conduction is required; or (2) classical thermal conduction is adequate to drive the flow. This ambiguity has been clarified by Ulysses observations of the polar outflow (Phillips et al, 1994). The polar mass flux density lies in the middle of the range studies by Lallement et al (1986), which suggests that extended heating is going on out to at least approximately 5 AU. Independent, purely energetic arguments can be made to estimate the required coronal source (electron) temperature that would be required to account for the observed energy flux density. An electron temperature of at least 2 x 10(exp 6) K would be required for the classical conduction flux density to be comparable to the total energy flux density; such a high temperature is thought to be unlikely in a coronal hole. These arguments strongly suggest that some extended heating or momentum transfer mechanism is required to drive the solar wind from the polar coronal hole. A number of mechanisms are discussed.
    Keywords: Solar Physics
    Type: International Solar Wind 8 Conference; 30; NASA-CR-199940
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: Different types of nonlinear shock wave interactions in some regions of the solar wind flow are considered. It is shown, that the solar flare or nonflare CME fast shock wave may disappear as the result of the collision with the rotational discontinuity. By the way the appearance of the slow shock waves as the consequence of the collision with other directional discontinuity namely tangential is indicated. Thus the nonlinear oblique and normal MHD shock waves interactions with different solar wind discontinuities (tangential, rotational, contact, shock and plasmoidal) both in the free flow and close to the gradient regions like the terrestrial magnetopause and the heliopause are described. The change of the plasma pressure across the solar wind fast shock waves is also evaluated. The sketch of the classification of the MHD discontinuities interactions, connected with the solar wind evolution is given.
    Keywords: Solar Physics
    Type: International Solar Wind 8 Conference; 101; NASA-CR-199940
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2011-08-24
    Description: A fundamental problem in Solar-Terrestrial Physics is the origin of the solar transient plasma output, which includes the coronal mass ejection and its interplanetary manifestation, e.g. the magnetic cloud. The traditional blast wave model resulted from solar thermal pressure impulse has faced with challenge during recent years. In the MHD numerical simulation study of CME, the authors find that the basic feature of the asymmetrical event on 18 August 1980 can be reproduced neither by a thermal pressure nor by a speed increment. Also, the thermal pressure model fails in simulating the interplanetary structure with low thermal pressure and strong magnetic field strength, representative of a typical magnetic cloud. Instead, the numerical simulation results are in favor of the magnetic field expansion as the likely mechanism for both the asymmetrical CME event and magnetic cloud.
    Keywords: Solar Physics
    Type: International Solar Wind 8 Conference; 100; NASA-CR-199940
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2011-08-24
    Description: Coronal holes are the sources of the solar wind and, according to recent YOKOH observations, may undergo rapid changes which are associated with manifestations of explosive solar activity. Rapid changes in a hole's structure will produce rapid changes in the characteristics of the wind emerging from it and, in the particular c se of a sudden increase in wind velocity, this may lead to the formation of an interplanetary shock. We discuss the characteristics of shocks formed in such a way and compare them with interplanetary observations.
    Keywords: Solar Physics
    Type: International Solar Wind 8 Conference; 99; NASA-CR-199940
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...