ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aircraft Design, Testing and Performance
  • 2025-2025
  • 1980-1984  (22)
  • 1935-1939  (22)
  • 1
    Publication Date: 2004-12-03
    Description: Projections of technological advances to the year 2000 have suggested a number of possible conceptual types of air vehicles. For convenience, these have been grouped according to speed, increasing from below Mach 1 (including hovering flight) through various Mach ranges to orbital flight. The potential performance capabilities that could be realized for each of these types of aircraft provide exciting prospects for the years beyond 2000. It is clear that the greater design flexibilities provided by the projected technology advances will permit significant improvements in performance, economy, and safety and allow the design and development of aircraft systems that current technology will not support. In the following sections, each vehicle type is discussed, noting design features and significant advances. Where related aircraft exist, the significant economic and performance factors are compared. In addition, for each concept, the technology developments considered essential for the advanced concept are identified. The types of aircraft described are examples of what advances in the technology projected for the year 2000 could provide. They are by no means all that would be possible. The panel's views on the current state of knowledge of systems intergration as a discipline and the need for advancement in this area presented in the concluding section of this report.
    Keywords: Aircraft Design, Testing and Performance
    Type: Aeronautics Technology Possibilities for 2000: Report of a Workshop; 195-213; NASA-CR-205283
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-12-03
    Description: Over the last 50 years, aeronautical structures have evolved from the wood, fabric, and wire of low-speed biplanes to supersonic aircraft fabricated with advanced metallic and nonmetallic materials. The advances made in structures technology have had significant impact on aircraft design and performance. An example is the large weight reductions being realized from the utilization of composite materials for secondary and primary structures. However, structural advances have been evolutionary, not revolutionary. Through the year 2000, there are opportunities to obtain significant new advancements in structural technology. These advances could result in considerable performance and capability payoffs such as increased payload, range, speed, maneuverability, fuel efficiency, and safety through reductions in weight, increases in strength, and the ability to make structures pliable. Also, with new manufacturing processes it is possible that reductions in production costs will be realized. Some of the structural technology areas where future major advances could be made are adaptive structures, thermal structures, damage tolerant structures, propulsion system structures, and new structural concepts.
    Keywords: Aircraft Design, Testing and Performance
    Type: Aeronautics Technology Possibilities for 2000: Report of a Workshop; 71-98; NASA-CR-205283
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-23
    Description: An overview of the technical development of hingeless and bearingless rotors is given, with emphasis on aeroelastic and aeromechanical stability characteristics. Important considerations for theoretical analysis are discussed. Theoretical and experimental investigations of isolated blade flap-lag and flap-lag-torsion stability, and coupled rotor-body aeromechanical stability are described. Physical interpretation and important rotor system design parameters are emphasized. An overview of bearingless rotor dynamics is also included.
    Keywords: Aircraft Design, Testing and Performance
    Type: Vertica (ISSN 0360-5450); Volume 7; No. 2; 143-181
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: Raisbeck Mark Five Sabreliner 60A is a modernized, higher performance version of the Sabreliner business jet designed more than 20 years ago. Rockwell decided to update the design to incorporate NASA's computational fluid dynamics technology, thereby insuring continuing production of a competitive new airplane and protecting Sabreliner owners' investments by allowing them to convert to the update configuration. Redesign of the airplane involved extensive changes in aerodynamics structure and on-board systems. Key to Mark Five design is a new wing which has greater fuel capacity, increased span and improved airfoils to reduce fuel consumption.
    Keywords: Aircraft Design, Testing and Performance
    Type: Spinoff 1980; 61
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: Rohr Industries, Inc. specializes in the manufacturing of nacelles, thrust reversers, and other engine components, has made use of the COSMIC program in nacelle work for aircraft like the McDonnell Douglas DC-10, the French/German Airbus and the Boeing 727, 737 and 747 jetliners. They also manufacture complete nacelles for military and business aircraft and are supplying nacelle components for the Boeing 757. The nacelle requires research and development for each type of airplane because of complex airflows around the engine inlet and high pressures on the nacelle skin. The use of the computer program defines the airflow field around turbofan engine nacelle inlet and cowls. Pressures on the nacelle skin are estimated for various flight conditions and structural integrity of the nacelle design. Rohr estimates that use of this program saved six man-months of programmer time necessary to develop alternative software.
    Keywords: Aircraft Design, Testing and Performance
    Type: Spinoff 1982; 71
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: Farmers are increasingly turning to aerial applications of pesticides, fertilizers and other materials. Sometimes uneven distribution of the chemicals is caused by worn nozzles, improper alignment of spray nozzles or system leaks. If this happens, job must be redone with added expense to both the pilot and customer. Traditional pattern analysis techniques take days or weeks. Utilizing NASA's wind tunnel and computer validation technology, Dr. Roth, Oklahoma State University (OSU), developed a system for providing answers within minutes. Called the Rapid Distribution Pattern Evaluation System, the OSU system consists of a 100-foot measurement frame tied in to computerized analysis and readout equipment. System is mobile, delivered by trailer to airfields in agricultural areas where OSU conducts educational "fly-ins." A fly-in typically draws 50 to 100 aerial applicators, researchers, chemical suppliers and regulatory officials. An applicator can have his spray pattern checked. A computerized readout, available in five to 12 minutes, provides information for correcting shortcomings in the distribution pattern.
    Keywords: Aircraft Design, Testing and Performance
    Type: Spinoff 1982; 114-115
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: A stiffened composite panel has been designed that is representative of the fuselage structure of existing wide bodied aircraft. The panel is a minimum weight design, based on the current level of technology and realistic loads and criteria. Several different stiffener configurations were investigated in the optimization process. The final configuration is an all graphite epoxy J-stiffened design in which the skin between adjacent stiffeners is permitted to buckle under design loads. Fail-safe concepts typically employed in metallic fuselage structure have been incorporated in the design. A conservative approach has been used with regard to structural details such as skin frame and stringer frame attachments and other areas where sufficient design data was not available.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-CR-159302 , NAS 1.26:159302 , AD-A301599 , LG80ER0137
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: NACA model 11-C was tested according to the general method with the angle of afterbody keel set at five different angles from 2-1/2 degrees to 9 degrees, but without changing other features of the hull. The results of the tests are expressed in curves of test data and of non-dimensional coefficients. At the depth of step used in the tests, 3.3 percent beam, the smaller angles of afterbody keel give greater load-resistance ratios at the hump speed and smaller at high speed than the larger angles of afterbody keel. Comparisons are made of the load-resistance ratios at several other points in the speed range. The effect of variation of the angle of afterbody keel upon the take-off performance of a hypothetical flying boat of 15,000 pounds gross weight having a hull of model 11-C lines is calculated, and the calculations show that the craft with the largest of the angles of afterbody keel tested, 9 degrees, takes off in the least time and distance.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-TN-541
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The pressure recovery of incoming cooling air and the drag associated with engine cooling of a typical general aviation twin-engine aircraft was Investigated experimentally. The semispan model was mounted vertically in the 40 x 80-Foot Wind Tunnel at Ames Research Center. The propeller was driven by an electric motor to provide thrust with low vibration levels for the cold-now configuration. It was found that the propeller slip-stream reduces the frontal air spillage around the blunt nacelle shape. Consequently, this slip-stream effect promotes flow reattachment at the rear section of the engine nacelle and improves inlet pressure recovery. These effects are most pronounced at high angles of attack; that is, climb condition. For the cruise condition those improvements were more moderate.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA/TM-1980-208075 , NAS 1.15:208075 , AIAA Paper 80-1872 , Aircraft Systems and Technology Meeting; Aug 04, 1980 - Aug 06, 1980; Anaheim, CA; United States|Journal of Aircraft; 19; 3; 193-197
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-12
    Description: At the request of the Materiel Division, Wright Field, the National Advisory Committee for Aeronautics is conducting a program of flight tests on a Kellett YG-1B autogiro equipped with a new type of rotor blade. The new blades are tapered in both plan form. and thickness and are designed to avoid periodic blade twist. One phase of the investigation, involving determination of the moments of the resultant rotor force about the trunnions on which the hub is pivoted for control, has been completed. The results obtained are reported herein.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-MR-X-1939
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-16
    Description: After studying three Tech Briefs reports on NASA submerged duct technology developed for high performance aircraft, Wilhelm Cashen was able to adapt the technology to the induction intercooler system of turbocharged lightplanes. In lightplane installations, the submerged ducts introduce cool "ram" air to the propulsion system for greater operating efficiency.
    Keywords: Aircraft Design, Testing and Performance
    Type: Spinoff 1984; 95
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-08-15
    Description: An investigation at low subsonic speeds has been conducted in the Langley 300-MPH 7- by 10-foot tunnel. The basic wing had a trapezoidal planform, an aspect ratio of 3.0., a taper ratio of 0.143, and an unswept 80-percent-chord line. Modifications to the basic wing included deflectable full-span and partial-span leading-edge chord-extensions. A trapezoidal horizontal control similar in planform to the basic wing and a 60 deg sweptback delta horizontal control were tested in conjunction with the wing. The total planform area of each horizontal control was 16 percent of the total basic-wing area. Modifications to these horizontal controls included addition of a full-span chord-extension to the trapezoidal planform and a fence to the delta planform.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-TM-X-549 , L-1372
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-15
    Description: Developed in NASA's Aircraft Energy Efficiency program and manufactured by Gates Learjet Corporation, the winglet is an aerodynamic innovation designed to reduce fuel consumption and improve airplane performance. Winglets are lifting surfaces designed to operate in the "vortex" or air whirlpool which occurs at an airplane's wingtip. Complex flow of air around wingtip creates drag which retards the plane's progress. Winglet reduces strength of vortex and thereby reduces strength of drag. Additionally, winglet generates its own lift, producing forward thrust in the manner of a boat's sail. Combination of reduced drag and additional thrust adds up to significant improvement in fuel efficiency.
    Keywords: Aircraft Design, Testing and Performance
    Type: Spinoff 1980; 60
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-08-14
    Description: The results of studies conducted over the last 15 years to assess missions and vehicle concepts for modern, propelled, lighter-than-air vehicles (airships) were surveyed. Rigid and non-rigid airship concepts are considered. The use of airships for ocean patrol and surveillance is discussed along with vertical heavy lift airships. Military and civilian needs for high altitude platforms are addressed. Around 1970 a resurgence of interest about lighter-than-air vehicles (airships) occurred in both the public at large and in certain isolated elements of the aerospace industry. Such renewals of airship enthusiasm are not new and have, in fact, occurred regularly since the days of the Hindenburg and other large rigid airships. However, the interest that developed in the early 1970's has been particularly strong and self-sustaining for a number of good reasons. The first is the rapid increase in fuel prices over the last decade and the common belief (usually true) that airships are the most fuel efficient means of air transportation. Second, a number of new mission needs have arisen, particularly in surveillance and patrol and in vertical heavy-lift, which would seem to be well-suited to airship capabilities. The third reason is the recent proposal of many new and innovative airship concepts. Finally, there is the prospect of adapting to airships the tremendous amount of new aeronautical technology which has been developed in the past few decades thereby obtaining dramatic new airship capabilities. The primary purpose of this volume is to survey the results of studies, conducted over the last 15 years, to assess missions and vehicle concepts for modern propelled lighter-than-air vehicles.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA-TM-86672 , A-85077 , NAS 1.15:86672
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-13
    Description: Preliminary information on the complex subject of the fatigue strength of fabricated structural members for aircraft is presented in the test results obtained on several different types of airship girders subjected to axial tension and compression in a resonance fatigue machine. A description of this machine as well as numerous photographs of the fatigue failures are given. There is also presented an extended bibliography on the subject of fatigue strength.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-TN-637
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-13
    Description: The problem of determining aircraft motions along a trajectory is solved using a variational algorithm that generates unmeasured states and forcing functions, and estimates instrument bias and scale-factor errors. The problem is formulated as a nonlinear fixed-interval smoothing problem, and is solved as a sequence or linear two-point boundary value problems, using a sweep method. The algorithm has been implemented for use in flight-test and accident analysis. Aircraft motions are assumed to be governed by a six-degree-of-freedom kinematic model; forcing functions consist of body accelerations and winds, and the measurement model includes aerodynamic and radar data. Examples of the determination of aircraft motions from typical flight-test and accident data are presented.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper 80-1601R , Journal of Aircraft; 19; 7; 546-552|Atmospheric Flight Mechanics Conference; Aug 11, 1980 - Aug 13, 1980; Danvers, MA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-13
    Description: The Quiet Short-Haul Research Aircraft (QSRA) is a flight facility which Ames Research Center is using to conduct a broad program of terminal area and low-speed, propulsive-life flight research. A joint Navy/NASA flight research program used the QSRA to investigate the application of advanced propulsive-lift technology to the naval aircraft-carrier environment. Flight performance of the QSRA is presented together with the results or the joint Navy/NASA flight program. During the joint program, the QSRA operated aboard the USS Kitty Hawk for 4 days, during which numerous unarrested landings and free deck takeoffs were accomplished. These operations demonstrated that a large aircraft incorporating upper-surface-blowing, propulsive-life technology can be operated in the aircraft-carrier environment without any unusual problems.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA/TM-81-208077 , NAS 1.15:208077 , AIAA Paper 81-0152 , Aerospace Sciences Meeting; Jan 12, 1981 - Jan 15, 1981; Saint Louis, MO; United States|Journal of Aircraft; 19; 8; 655-660
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-13
    Description: A moving-base simulator experiment conducted at Ames Research Center demonstrated that a wings-level-turn control mode improved flying qualities for air-to-ground weapons delivery compared with those of a conventional aircraft. Evaluations of criteria for dynamic response for this system have shown that pilot ratings correlate well with equivalent time constant of the initial response and with system bandwidth. Ranges of this time constant, as well as digital-system transport delays and lateral-acceleration control authorities that encompassed level 1 through level 3 handling qualities, were determined.
    Keywords: Aircraft Design, Testing and Performance
    Type: NASA/TM-80-208078 , NAS 1.15:208078 , AIAA Paper 80-1628 , Journal of Aircraft; 19; 9; 744-751|Atmospheric Flight Mechanics Conference; Aug 11, 1980 - Aug 13, 1980; Danvers, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-13
    Description: Discrete attitude commands have become a standard task for flying qualities evaluation and control system testing. Much pilot opinion data is now available for ground-based and in-flight simulations, but adequate performance measures and prediction methods have not been established. The Step Target Tracking Prediction method, introduced in 1978, correlated time-on-target and rms tracking data with NT-33 in-flight longitudinal simulations, but did not employ parameters easily measured in manned flight and simulation. Recent application of the Step Target Tracking Prediction method to lateral flying qualities analysis has led to a new measure of performance. This quantity, called Maximum Normalized Rate (MNR), reflects the greatest attitude rate a pilot can employ during a discrete maneuver without excessive overshoot and oscillation. MNR correlates NT-33 lateral pilot opinion ratings well, and is easily measured during night test or simulation. Furthermore, the Step Target MNR method can be used to analyze large amplitude problems concerning rate limiting and nonlinear aerodynamics.
    Keywords: Aircraft Design, Testing and Performance
    Type: Manual Control Conference; Jun 12, 1984 - Jun 14, 1984; Moffett Field, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-12
    Description: Wing ducts for liquid-cooled engine radiators have been investigated in the N.A.C.A. full-scale wind tunnel on a large model airplane. Th e tests were made to determine the relative merits of several types of duct and radiator installations for an airplane of a particular des ign. In the test program the principal duct dimensions were system atically varied, and the results are therefore somewhat applicable to the general problems of wing duct design, although they should be co nsidered as preliminary and only indicative of the inherent possibil ities.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-SR-88
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-12
    Description: The relative efficiencies of various engine-propeller combinations were the subject of a study that covered the important flight conditions, particularly the take-off. Design charts that graphically correlate the various propeller parameters were prepared to facilitate the solution of problems and also to c1arify the conception of the relationships of the various engine-propeller design factors. It is shown that, among the many methods for improving the take-off thrust, the use of high-pitch, large-diameter controllable propellers turning at low rotational speeds is probably the most generally promising. With such a combination the take-off thrust may be further increased, at the expense of a small loss in cruising efficiency, by compromise designs wherein the pitch setting is slightly reduced and the diameter is further increased. The degree of compromise necessary to accomplish the maximum possible take-off improvement depends on such design factors as overspeeding and overboosting at take-off as well as depending on the design altitude. Both overspeeding and designing for altitude operation have the same effect on the take-off thrust as compromising in that the propulsive efficiency is increased thereby; boosting the engine, however, has the reverse effect on the propulsive efficiency, although the brake horsepower is increased.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-SR-55
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-07-12
    Description: Wind-tunnel tests were conducted on a model wing-nacelle combination to determine the practicability of cooling radial engines by forcing the cooling air into wing-duct entrances located in the propeller slipstream, passing the air through the engine baffles from rear to front, and ejecting the air through an annular slot near the front of the nacelle. The tests, which were of a preliminary nature, were made on a 5-foot-chord wing and a 20-inch-diameter nacelle. A 3-blade, 4-foot-diameter propeller was used. The tests indicated that this method of cooling and cowling radial engines is entirely practicable providing the wing of the prospective airplane is sufficiently thick to accommodate efficient entrance ducts , The drag of the cowlings tested was definitely less than for the conventional N.A.C.A. cowling, and the pressure available at low air speed corresponding to operation on the ground and at low flying speeds was apparently sufficient for cooling most present-day radial engines.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-SR-101
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-12
    Description: An investigation was made in the NACA 5-foot vertical wind tunnel of a large variety of duct inlets and outlets to obtain information relative to their design for the cooling or the ventilation systems on aircraft. Most of the tests were of openings in a flat plate but, in order to determine the best locations and the effects of interference, a few tests were made of openings in an airfoil. The best inlet location for a system not including a blower was found to be at the forward stagnation point; for one including a blower, the best location was found to be in the region of lowest total head, probably in the boundary layer near the trailing edge. Design recommendations are given, and it is shown that correct design demands a knowledge of the external flow and of the internal requirements in addition to that obtained from the results of the wind tunnel tests.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-SR-95
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-12
    Description: The systematic investigation of wing cooling ducts at the NACA laboratory has been continued with tests in the full-scale wind tunnel on ducts of finite span. These results extend the previous investigation on section characteristics of ducts to higher Reynolds numbers and indicate the losses due to the duct ends. The data include comparisons between ducts completely within the ring and the conventional underslung ducts. Methods of flow regulation were studied and data were obtained for a wide range of internal duct resistance. The results show satisfactory correlation between the finite span and the previously measured section characteristics obtained with full-span ducts. The effects of the various design parameters on the duct characteristics are discussed. The cooling power required for the internal duct installation is shown to be only a small percentage of the engine power.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-SR-94
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-12
    Description: The effects of the geometrical arrangement of tricycle landing gears on various characteristics of an airplane equipped with such landing gear is discussed. The characteristics discussed include directional stability, overturning tendencies, steering and ground handling, shimmy, takeoff, and porpoising. The conclusions are summarized in a table.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-SR-63
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: An electrical-type meter has been developed for measuring mass rates of flow of gasoline or other nonconducting fluids. Its temperature dependence is small over a large range and it has no known vibrational or viscosity errors. The maximum temperature rise is less than 5 C. The rates of flow, measurable within 1% with the present instrument, are approximately 100 to 1,000 or more pounds of gasoline per hour when a potentiometer is used, or 100 to 300 pounds per hour when a deflection-type meter is used.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-SR-12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-12
    Description: Present designs for large flying boats are characterized by high wing loading, high aspect ratio, and low parasite drag. The high wing loading results in the universal use of flaps for reducing the takeoff and landing speeds. These factors have an effect on takeoff performance and influence to a certain extent the design of the hull. An investigation was made of the influence of various factors and design parameters on the takeoff performance of a hypothetical large flying boat by means of takeoff calculations. The parameters varied in the calculations were size of hull (load coefficient), wing setting, trim, deflection of flap, wing loading, aspect ratio, and parasite drag. The takeoff times and distances were calculated to the stalling speeds and the performance above these speeds was studied separately to determine piloting technique for optimum takeoff. The advantage of quick deflection of the flap at high water speeds is shown.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-SR-119
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: The fundamental principles of fluid flow, pressure losses, and heat transfer have been presented and analyzed for the case of a smooth tube with fully developed turbulent flow. These equations apply to tubes with large length-diameter ratios where the f1ow is at a high Reynolds Number. The error introduced by using these equations increases as the magnitude of the tube length and the air-flow Reynolds Number approaches the values encountered in modern radiator designs. Accordingly, heat-transfer tests on radiator sections were made and the results are presented in nondimensional form to facilitate their use and for comparison with other heat-transfer data. In addition, pressure losses were measured along smooth tubes of circular, square, and rectangular cross section and the results were also correlated and are presented in nondimensional form. The problem of a radiator design for a particular installation is solved, the experimental heat-transfer and pressure-loss data being used, on a basis of power chargeable to the radiator for form drag, for propelling the weight, and for forcing the air through the radiator. The case of an installation within a wing or an engine nacelle is considered. An illustration of radiator design is carried through for an arbitrary set of conditions. Sufficient detail is given to enable the reader to reproduce the analysis for any given case.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-SR-112
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-12
    Description: The drag of closed-cockpit and transport-type windshields was determined from tests made at speeds from 200 to 440 miles per hour in the NACA 8-foot high-speed wind tunnel. This speed range corresponds to a test Reynolds number range of 2,510,000 to 4,830,000 based on the mean aerodynamic chord of the full-span model (17.29 inches). The shapes of the windshield proper, the hood, and the tail fairing were systematically varied to include common types and a refined design. Transport types varied from a reproduction of a current type to a completely faired windshield. The results show that the drag of windshields of the same frontal area, on airplanes of small to medium size, may account for 15% of the airplane drag or may be reduced to 1%. Optimum values are given for windshield and tail-fairing lengths; the effect, at various radii is shown. The longitudinal profile of a windshield is shown to be most important and the transverse profile, to be much less important. The effects of retaining strips, of steps for telescoping hoods, and of recessed windows are determined. The results show that the drag of transport-type windshields may account for 21% of the fuselage drag or may be reduced to 2%.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-SR-114
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-12
    Description: When an airplane is operating at high altitude, it is necessary to use a supercharger to maintain ground pressure at the carburetor inlet. This maintenance and high intake-manifold pressure tends to keep the power output of the engine at ground-level value. The air, being compressed by the supercharger, however, is heated by adiabatic compression and friction to a temperature that seriously affect the performance of the engine. It is thus necessary to use an intercooler to reduce the temperature of the air between the supercharger outlet and the carburetor inlet. The amount of cooling required of the intercooler depend on the efficiency of the supercharger installation. In this investigation, several types of intercoolers were compared and a design procedure that will give the best intercooler for a given set of conditions is indicated. The figure of merit used for the selection of the best design was the total power consumed by the intercooler. This value includes the power required to transport the weight of the intercooler as well as the power used to force the charge air and the cooling air through the intercooler. The cost, size and practicality of construction were not considered, inasmuch as it was thought that a survey of possibilities of improvement in design would be of interest, regardless of whether the improvement could be immediately realized. Three types of intercoolers are included in this survey: a counterflow intercooler with indirect cooling surface in the form of fins, a counterflow intercooler with direct cooling surfaces, and a cross-flow, tube-type intercooler.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-SR-124
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-12
    Description: An investigation was undertaken to determine the character and importance of the transition phase between the ground run and steady climb in the takeoff of an airplane and the effects of various factors on this phase and on the airborne part of the takeoff as a whole. The information was obtained from a series of step-by-step integrations, which defined the motion of the airplane during the transition and which were based on data derived from actual takeoff tests of a Verville AT airplane. Both normal and zoom takeoffs under several loading and takeoff speed conditions were considered. The effects of a moderate wind with a corresponding wind gradient and the effect of proximity of the ground were also investigated. The results show that, for normal takeoffs, the best transition was realized at the lowest possible takeoff speed. Moreover, this speed gave the shortest overall takeoff distance for normal takeoffs. Zoom takeoffs required a shorter overall takeoff run than normal takeoffs, particularly with a heavy landing, if the obstacle to be cleared was sufficiently high (greater than 50 feet); no advantage was indicated to the airplane with a light loading if the height to be cleared was less. The error resulting from the neglect of the transition in the calculation of the airborne distance of takeoff was found to vary from 4% with the heaviest loading considered to -4% with the lightest loading for normal takeoffs over a 100-ft obstacle; the percentage error was twice as great for a 50-foot obstacle. For zoom takeoffs the error attained much greater values. The average wind gradient corresponding to a 5-mile-per-hour surface wind reduced the airborne distance required to clear a 50-foot obstacle by about 9% with the lightest loading and 16% with the heaviest loading; for both cases. The overall reduction due to this wind was approximately twice that resulting from the wind gradient alone. A simple expression for the reduction of observed takeoff performance to no-wind conditions is presented. Ground effect is shown to reduce the airborne distance to attain a height of 50 foot by 10% with the lightest loading and 16% with the heaviest loading; for a 100-foot obstacle the percentage reduction was about 1/2 as great.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-SR-70
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-12
    Description: An investigation was made in the NACA 7- by 10-foot wind tunnel of a large-chord wing model with a duct to house a simulated radiator suitable for a liquid-cooled engine. The duct was expanded to reduce the radiator losses, and the installation of the duct and radiator was made entirely within the wing to reduce form and interference drag. The tests were made using a two-dimensional flow set-up with a full-span duct and radiator. Section aerodynamic characteristics of the basic airfoil are given and also curves showing the characteristics of the various duct-radiator combinations. An expression for efficiency, the primary criterion of merit of any duct, and the effect of the several design parameters of the duct-radiator arrangement are discussed. The problem of throttling is considered and a discussion of the power required for cooling is included. It was found that radiators could be mounted in the wing and efficiently pass enough air for cooling with duct outlets located at any point from 0.25c to 0.70c from the wing leading edge on the upper surface. The duct-inlet position was found to be critical and, for maximum efficiency, had to be at the stagnation point of the airfoil and to change with flight attitude. The flow could be efficiently throttled only by a simultaneous variation of duct inlet and outlet sizes and of inlet position. It was desirable to round both inlet and outlet lips. With certain arrangements of duct, the power required for cooling at high speed was a very low percentage of the engine power.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-SR-93
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-12
    Description: The torsional deflection of the blades of three full-scale duralumin propellers operating under various loading conditions was measured by a light-beam method. Angular bending deflections were also obtained as an incidental part of the study. The deflection measurements showed that the usual present-day type of propeller blades twisted but a negligible amount under ordinary flight conditions. A maximum deflection of about 1/10th of a degree was found at V/nD of 0.3 and a smaller deflection at higher values of V/nD for the station at 0.70 radius. These deflections are much smaller than would be expected from earlier tests, but the light-beam method is considered to be much more accurate than the direct-reading transit method used in the previous tests.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-SR-84
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-12
    Description: A 1/3.5 full-size model of the Mark V float of the Bureau of Aeronautics, Navy Department, was tested in the NACA tank both with smooth painted bottom surfaces and with roundhead rivets, plate laps, and keel plates fitted to simulate the actual bottom of a metal float. The augmentation in water resistance due to the added roughness was found to be from 10-12% at the hum speed and from 12-14% at high speeds. The effect of the roughness of the afterbody was found to be negligible except at high trims. The model data were extrapolated to full size by the usual method which assumes the forces to vary according to Froude's law, and in the case of the smooth model by a method of separation that takes into account the effect of scale on the frictional resistance. It was concluded that the effect of rivet heads on the takeoff performance of a relatively high-powered float seaplane is of little consequence but that it may be of greater importance in the case of more moderately powered flying boats.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-SR-51
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-12
    Description: In many installations of castering rubber-tired wheels there is a tendency for the wheel to oscillate violently about the spindle axis. This phenomenon, popularly called 'shimmy,' has occurred in some airplane tail wheels and has been corrected in two ways: first by the application of friction in the spindles of the tail wheels; and, second, by locking the wheels while taxiing at high speeds. Shimmy is common with the large wheels used as nose wheels in tricycle landing gears and, since it is impossible to lock the wheels, friction in the nose-wheel spindle has been the sole means of correction. Because the nose wheel is larger than the conventional tail wheel and usually carries a greater load, the larger amounts of spindle friction necessary to prevent shimmy are objectionable. the present paper presents a theoretical and experimental study of the problem of the stability of castering wheels for airplane landing gears. On the basis of simplified assumptions induced from experimental observations, a theoretical study has been made of the shimmy of castering wheels. The theory is based on the discovery of a phenomenon called 'kinematic shimmy' and is compared quantitatively with the results of model experiments. Experimental checks, using a model having low-pressure tires, are reported and the applicability of the results to full scale is discussed. Theoretical methods of estimating the spindle viscous damping and spindle solid friction necessary to avoid shimmy - lateral freedom - is introduced.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-SR-67
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-12
    Description: A flight simulator arrangement wherein a conventional, movable base flight trainer is combined with a visual cue display surface spaced a predetermined distance from an eye position within the trainer. Thus, three degrees of motive freedom (roll, pitch and crab) are provided for a visual proprioceptive, and vestibular cue system by the trainer while the remaining geometric visual cue image alterations are developed by a video system. A geometric approach to computing runway image eliminates a need to electronically compute trigonometric functions, while utilization of a line generator and designated vanishing point at the video system raster permits facile development of the images of the longitudinal edges of the runway.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-12
    Description: This report describes and gives the results of tests made to determine the effect of lateral inclination of the propeller thrust axis to the direction of flight. A wing-nacelle-propeller combination with the nacelle axis located successively parallel to and at 15 degrees to the perpendicular to the leading edge of a wing was tested with the combination at several angles of yaw. Tests of the wing alone at the same angles of yaw were also made. The data are presented in the usual graphic form. An increase in propulsive efficiency with increase in angle of the thrust axis was found. The change in net efficiency, found by charging the whole nacelle drag to the power unit, was negligible, however, within the range of the tests.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-SR-28
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-13
    Description: Preliminary performance analysis and conceptual design are described for a class of unmanned airplanes possessing multi-day endurance capability. A mixed-mode electric power system incorporates solar cells for daytime energy production and a non-regenerative H2-02 fuel cell to supply energy for night flight. The power system provides energy for all onboard systems, including propulsion., payload, and avionics. Excess solar energy is available during significant portions of the day, and may be used for climbing, maneuvering, or payload functions. By jettisoning fuel cell reactant product (water) during flight, vehicle endurance may be increased under certain conditions. Empirical structure sizing algorithms are combined with low-Reynolds number aerodynamics algorithms to estimate airplane size and geometry to meet prescribed mission requirements. Initial calculations for summertime, high-altitude flight (above 40,000 ft (12 km)) at moderate latitude (31 deg N) indicate that mission endurance of several days may be possible for configurations having wing loadings on the order of 0.9 to 1.3 lb/ft(exp 2). These aircraft tend to be somewhat smaller than solar-powered aircraft previously conceived for multi-month endurance utilizing regenerative fuel cell systems for night flight.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper 84-1430 , AIAA/SAE/ASME 20th Joint Propulsion Conference; Jun 11, 1984 - Jun 13, 1984; Cincinnati, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-15
    Description: Francis M. Rogallo and his wife Gertrude researched flexible controllable fabric airfoils with a delta, V-shaped, configuration for use on inexpensive private aircraft. They were issued a flex-wing patent and refined their designs. Development of Rogallo wings, used by U.S. Moyes, Inc. substantially broadened the flexible airfoil technology base which originated from NASA's reentry parachute. The Rogallo technology, particularly the airfoil frame was incorporated in the design of a kite by John Dickenson. The Dickenson kite served as prototype for the Australian Moyes line of hang gliders. Company no longer exists.
    Keywords: Aircraft Design, Testing and Performance
    Type: Spinoff 1981; 79
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-26
    Description: With some airplanes the approach to the stall is accompanied by changes in the behavior, such as tail buffeting or changes in the control characteristics of the airplane so that the pilot obtains a warning of the impending stall. Vith other airplanes it is possible to approach the stall without any perceptible warning other than the reading of the air-speed meter, in which case the danger of inadvertent stalling is considerably greater. Although it is not within the scope of this paper to discuss stalling characteristics, it is desired to point out that in general the danger of inadvertent stalling is greatest with those airplanes that behave worse when the stalling occurs; that is, with airplanes in which the stall starts at the wing tips. A warning of the impending stall is desirable in any case, but is particularly desirable with airplanes of the latter type.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-SR-80
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-08-26
    Description: The pressure distribution on the fuselage of a midwing airplane model was measured in the NACA 8-foot high speed wind tunnel at speeds from 140 to 440 miles per hour for lift coefficients ranging from -0.2 to 1.0. The primary purpose of the tests was to provide data showing the air pressures on various parts of the fuselage for use in structural design. The data may also be used for the design of scoops and vents. The results show that the highest negative pressures occurred near the wing and were more dependent on the wing than on the fuselage. At high speeds, the magnitude of the pressure coefficients as predicted from pressure coefficients determined experimentally at low speeds by application of the theoretical factor 1/(square root)1-M(exp 2) (where M is the ratio of the air speed to the speed of sound in air) may misrepresent the actual conditions. At the points where the maximum negative pressures ocurred, however, the variation of the pressure coefficients was in good agreement with the theoretical factor, indicating that this factor may afford satisfactory predictions of critical speed, at least for fuselages similar to the shape tested.
    Keywords: Aircraft Design, Testing and Performance
    Type: NACA-SR-133
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-15
    Description: A temperature compensated passive linkage for interconnecting two members having different coefficients of expansion. Preferably the linkage is utilized for interconnecting the stabilizer of a plane with its elevator. The stabilizer may be a graphite epoxy composite while the elevator may consist of aluminum-fiberglass. The differences in the rate of expansion of the two members is compensated by the linkage of the invention which in turn will move a side load hinge fitting to minimize aerodynamic and mechanical problems.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-08-15
    Description: A lightning protection system for advanced composite aircraft structures consisting of a sandwich structure including two layers of aluminum foil separated by a layer of dielectric material. The sandwich structure is applied to the surface of the composite aircraft structure desired to be protected from lightning strike damage thereby confining damage to the sandwich structure which can be removed and replaced.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-15
    Description: Design of military and civil helicopters, produced by Bell Helicopter Textron, and aided by the use of COSMIC'S computer program VASP enables performance of more accurate analyses to insure product safety and improved production efficiency.
    Keywords: Aircraft Design, Testing and Performance
    Type: Spinoff 1982; 56
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...