ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Chemical Society  (348,515)
  • 2025-2025
  • 2015-2019  (248,712)
  • 1975-1979  (99,803)
Collection
Publisher
Years
Year
  • 11
    facet.materialart.
    Unknown
    American Chemical Society
    In:  Journal of Agricultural and Food Chemistry, 67 (18). pp. 5135-5146.
    Publication Date: 2021-01-08
    Description: UPLC–TOF/MS profiling, followed by the recently reported differential off-line LC–NMR (DOLC–NMR) and quantitative 1H NMR spectroscopy (qHNMR), led to the differential qualitative analysis and accurate quantitation of l-tryptophan-induced metabolome alterations of Penicillium roqueforti, which is typically used in making blue-mold cheese. Among the 24 metabolites identified, two tetrapeptides, namely, d-Phe-l-Val-d-Val-l-Tyr and d-Phe-l-Val-d-Val-l-Phe, as well as cis-bis(methylthio)silvatin, are reported for the first time as metabolites of P. roqueforti. Antimicrobial activity tests showed strong effects of the catabolic l-tryptophan metabolites 3-hydroxyanthranilic acid, anthranilic acid, and 3-indolacetic acid against Saccharomyces cerevisiae, with IC50 values between 15.6 and 24.0 μg/mL, while roquefortine C and cis-bis(methylthio)silvatin inhibited the growth of Gram-negative Escherichia coli and Gram-positive Bacillus subtilis with IC50 values between 30.0 and 62.5 μg/mL.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2020-12-03
    Description: Noninvasive diagnostic by imaging combined with a contrast agent (CA) is by now the most used technique to get insight into human bodies. X-ray and magnetic resonance imaging (MRI) are widely used technologies providing complementary results. Nowadays, it seems clear that bimodal CAs could be an emerging approach to increase the patient compliance, accessing different imaging modalities with a single CA injection. Owing to versatile designs, targeting properties, and high payload capacity, nanocarriers are considered as a viable solution to reach this goal. In this study, we investigated efficient superparamagnetic iron oxide nanoparticle (SPION)-loaded iodinated nano-emulsions (NEs) as dual modal injectable CAs for X-ray imaging and MRI. The strength of this new CA lies not only in its dual modal contrasting properties and biocompatibility, but also in the simplicity of the nanoparticulate assembling: iodinated oily core was synthesized by the triiodo-benzene group grafting on vitamin E (41.7% of iodine) via esterification, and SPIONs were produced by thermal decomposition during 2, 4, and 6 h to generate SPIONs with different morphologies and magnetic properties. SPIONs with most anisotropic shape and characterized by the highest r2/r1 ratio once encapsulated into iodinated NE were used for animal experimentation. The in vivo investigation showed an excellent contrast modification because of the presence of the selected NEs, for both imaging techniques explored, that is, MRI and X-ray imaging. This work provides the description and in vivo application of a simple and efficient nanoparticulate system capable of enhancing contrast for both preclinical imaging modalities, MRI, and computed tomography.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2020-12-02
    Description: The exploration and proposed mining of sulfide massive deposits in deep-sea environments and increased use deep-sea tailings placement (DSTP) in coastal zones has highlighted the need to better understand the fate and effects of mine-derived materials in marine environments. Metal sulfide ores contain high concentrations of metal(loid)s, of which a large portion exist in highly mineralized or sulfidised forms and are predicted to exhibit low bioavailability. In this study, sediments were spiked with a range of natural sulfide minerals (including chalcopyrite, chalcocite, galena, sphalerite) to assess the bioavailability and toxicity to benthic invertebrates (bivalve survival and amphipod survival and reproduction). The metal sulfide phases were considerably less bioavailable than metal contaminants introduced to sediment in dissolved forms, or in urban estuarine sediments contaminated with mixtures of metal(loid)s. Compared to total concentrations, the dilute-acid extractable metal(loid) (AEM) concentrations, which are intended to represent the more oxidized and labile forms, were more effective for predicting the toxicity of the sulfide mineral contaminated sediments. The study indicates that sediment quality guidelines based on AEM concentrations provide a useful tool for assessing and monitoring the risk posed by sediments impacted by mine-derived materials in marine environments.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2020-09-02
    Description: Marine plastic debris is a global environmental problem. Surveys have shown that 〈5 mm plastic particles, known as microplastics, are significantly more abundant in surface seawater and on shorelines than larger plastic particles are. Nevertheless, quantification of microplastics in the environment is hampered by a lack of adequate high-throughput methods for distinguishing and quantifying smaller size fractions (〈1 mm), and this has probably resulted in an underestimation of actual microplastic concentrations. Here we present a protocol that allows high-throughput detection and automated quantification of small microplastic particles (20–1000 μm) using the dye Nile red, fluorescence microscopy, and image analysis software. This protocol has proven to be highly effective in the quantification of small polyethylene, polypropylene, polystyrene, and nylon-6 particles, which frequently occur in the water column. Our preliminary results from sea surface tows show a power-law increase in small microplastics (i.e., 〈1 mm) with a decreasing particle size. Hence, our data help to resolve speculation about the “apparent” loss of this fraction from surface waters. We consider that this method presents a step change in the ability to detect small microplastics by substituting the subjectivity of human visual sorting with a sensitive and semiautomated procedure.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    American Chemical Society
    In:  Energy & Fuels, 29 (9). pp. 5681-5691.
    Publication Date: 2020-07-31
    Description: The shrinking-core model of the formation of gas hydrates from ice spheres with well-defined geometry gives experimental access to the gas permeation in bulk hydrates which is relevant to their use as energy storage materials, their exploitation from natural resources, as well as to their role in flow assurance. Here we report on a new approach to model CO2 clathration experiments in the temperature range from 230 to 272 K. We develop a comprehensive description of the gas permeation based on the diffusion along the network of polyhedral cages, some of them being empty. Following earlier molecular dynamics simulation results, the jump from a cage to one of its empty neighbors is assumed to proceed via a “hole-in-cage-wall” mechanism involving water vacancies in cage walls. The rate-limiting process in the investigated temperature range can be explained by the creation of water-vacancy-interstitial pairs. The gas diffusion leads to a time-dependent cage filling which decreases across the hydrate layer with the distance from the particle surface. The model allows a prediction of the time needed for a complete conversion of ice spheres into clathrate as well as the time needed for a full equilibration of the cage fillings. The findings essentially support our earlier results obtained in the framework of a purely phenomenological permeation model in terms of the overall transformation kinetics, yet it provides for the first time insight into the cage equilibration processes. The diffusion of CO2 molecules through bulk hydrate is found to be about three to four times faster in comparison with the CH4 case.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    American Chemical Society
    In:  Energy & Fuels, 32 (8). pp. 8167-8174.
    Publication Date: 2020-07-31
    Description: Methane recovery from artificial hydrate-bearing sandstones by simulated flue gas swapping was tested using a core flooding experimental setup. Seven groups of experiments were conducted to investigate the effect of hydrate saturation as well as the initial porosity and permeability of sandstones on methane production and carbon dioxide capture. The results show that the CH4 recovery efficiency and the amount of CO2 captured increase with the increase of hydrate saturation at the same initial porosity and permeability of sandstone. The highest CH4 recovery obtained is 51.6% and 99.4% of CO2 in simulated flue gas is sequestered in the hydrate phase after swapping at 9.2 MPa and 277.15 K. Hydrate saturation was 82.5% and the initial porosity and permeability of sandstone are 25.1% and 49 mD, respectively. With the increase of initial porosity and permeability of sandstone, the CH4 recovery efficiency and the amount of CO2 captured increase when other conditions (the hydrate saturation and reaction time) are similar. For investigating the CH4-flue gas swapping mechanism, a micro-differential scanning calorimetry was used to test the heat changes in the whole reaction. No noticeable endothermic or exothermic phenomenon was detected in the CH4-flue gas swapping, which indicates that CH4 hydrate would form mixed hydrates directly instead of going through a dissociation and reformation process. Based on the observed experimental results, a CH4-flue gas swapping mechanism is proposed and the reaction process is found to be essentially controlled by mass transfer.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2020-07-27
    Description: In the colloidal synthesis of iron sulfides, a series of dialkyl disulfides, alkyl thiols, and dialkyl disulfides (allyl, benzyl, tert-butyl, and phenyl) were employed as sulfur sources. Their reactivity was found to tune the phase between pyrite (FeS2), greigite (Fe3S4), and pyrrhotite (Fe7S8). DFT was used to show that sulfur-rich phases were favored when the C–S bond strength was low in the organosulfurs, yet temperature dependent studies and other observations indicated the reasons for phase selectivity were more nuanced; the different precursors decomposed through different reaction mechanisms, some involving the oleylamine solvent. The formation of pyrite from diallyl disulfide was carefully studied as it was the only precursor to yield FeS2. Raman spectroscopy indicated that FeS2 forms directly without an FeS intermediate, unlike most synthetic procedures to pyrite. Diallyl disulfide releases persulfide (S–S)2– due to the lower C–S bond strength relative to the S–S bond strength, as well as facile decomposition in the presence of amines through SN2′ mechanisms at elevated temperatures.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2020-07-20
    Description: The guest-exchange method (or replacement) for methane production from gas hydrates has recently received attention because it can be used for both carbon dioxide sequestration and methane production. The structure of gas hydrates is maintained as a structure I (sI) hydrate while methane molecules are exchanged with carbon dioxide. In this study, CH4 + CO2 mixed gas hydrates were examined under terahertz light at various temperatures to simulate CH4–CO2 exchange reactions. Each gas hydrate composition examined was a representative composition at each step of the exchange reaction. The molecular composition was also accurately analyzed by gas chromatography. Refractive indices calculated by the terahertz time-domain spectroscopy (THz-TDS) of gas hydrate samples were correlated to the guest composition, and this novel method was proven to be used to quantify the extent of replacement via optical constant. Furthermore, changes in the water framework from the sI hydrate to ice using THz-TDS were investigated with an increasing temperature. Overall, this study reveals the process of guest exchange and phase transition from a gas hydrate to ice via the optical properties in the terahertz region, and it offers a powerful tool in gas hydrate production.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2020-06-15
    Description: Three monoterpenoid indole alkaloids (MIAs), tabernabovines A–C (1–3), were isolated from Tabernaemontana bovina. They were elucidated by spectroscopic data and computational calculations. Unlike precursors of MIAs, strictosidine and alstrostine A, alkaloid 1 consists of tryptamine and secologanin in a 2:1 ratio. Alkaloid 2 is a cage compound, and 3 possesses a bridged ring. Tabernabovine A exhibited inhibitory activity against NO production with IC50 44.1 μM compared to l-NMMA with IC50 of 48.6 μM.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Chemical Society
    In:  EPIC3Environmental Science & Technology, American Chemical Society, 53, pp. 8747-8756, ISSN: 1520-5851
    Publication Date: 2020-06-04
    Description: Recent studies pointed to a high ice nucleating activity (INA) in the Arctic sea surface microlayer (SML). However, related chemical information is still sparse. In the present study, INA and free glucose concentrations were quantified in Arctic SML and bulk water samples from the marginal ice zone, the ice-free ocean, melt ponds, and open waters within the ice pack. T50 (defining INA) ranged from −17.4 to −26.8 °C. Glucose concentrations varied from 0.6 to 51 μg/L with highest values in the SML from the marginal ice zone and melt ponds (median 16.3 and 13.5 μg/L) and lower values in the SML from the ice pack and the ice-free ocean (median 3.9 and 4.0 μg/L). Enrichment factors between the SML and the bulk ranged from 0.4 to 17. A positive correlation was observed between free glucose concentration and INA in Arctic water samples (T50(°C) = (−25.6 ± 0.6) + (0.15 ± 0.04)·Glucose(μg/L), RP = 0.66, n = 74). Clustering water samples based on phytoplankton pigment composition resulted in robust but different correlations within the four clusters (RP between 0.67 and 0.96), indicating a strong link to phytoplankton-related processes. Since glucose did not show significant INA itself, free glucose may serve as a potential tracer for INA in Arctic water samples.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...