ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cell Reports 25 (2018): 1281–1291, doi:10.1016/j.celrep.2018.10.005.
    Description: Morphogenesis and mechanoelectrical transduction of the hair cell mechanoreceptor depend on the correct assembly of Usher syndrome (USH) proteins into highly organized macromolecular complexes. Defects in these proteins lead to deafness and vestibular areflexia in USH patients. Mutations in a non-USH protein, glutaredoxin domain-containing cysteine-rich 1 (GRXCR1), cause non-syndromic sensorineural deafness. To understand the deglutathionylating enzyme function of GRXCR1 in deafness, we generated two grxcr1 zebrafish mutant alleles. We found that hair bundles are thinner in homozygous grxcr1 mutants, similar to the USH1 mutants ush1c (Harmonin) and ush1ga (Sans). In vitro assays showed that glutathionylation promotes the interaction between Ush1c and Ush1ga and that Grxcr1 regulates mechanoreceptor development by preventing physical interaction between these proteins without affecting the assembly of another USH1 protein complex, the Ush1c- Cadherin23-Myosin7aa tripartite complex. By elucidating the molecular mechanism through which Grxcr1 functions, we also identify a mechanism that dynamically regulates the formation of Usher protein complexes.
    Description: This work was supported by grants from the NIH (DC004186, OD011195, and HD22486).
    Keywords: Grxcr1 ; Usher syndrome ; Hair cell ; Stereocilia ; Glutathionylation ; Harmonin ; Sans
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © The Company of Biologists, 2019. This article is posted here by permission of Company of Biologists for personal use, not for redistribution. The definitive version was published in Journal of Experimental Biology 222(2) (2019): jeb190587, doi:10.1242/jeb.190587.
    Description: A longstanding question in aquatic animal sensory physiology is the impact of self-generated movement on lateral line sensitivity. One hypothesis is that efferent modulation of the sensory hair cells cancels self-generated noise and allows fish to sample their surroundings while swimming. In this study, microwire electrodes were chronically implanted into the anterior lateral line nerve of oyster toadfish and neural activity was monitored during forward movement. Fish were allowed to freely swim or were moved by a tethered sled. In all cases, neural activity increased during movement with no evidence of efferent modulation. The anterior lateral line of moving fish responded to a vibrating sphere or the tail oscillations of a robotic fish, indicating that the lateral line also remains sensitive to outside stimulus during self-generated movement. The results suggest that during normal swim speeds, lateral line neuromasts are not saturated and retain the ability to detect external stimuli without efferent modulation.
    Description: Funding was provided by National Science Foundation grants IOS 1354745 and DBI 1359230 and 1659604.
    Description: 2020-01-25
    Keywords: Efferent ; Hair cell ; Self-generated movement ; Modulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0878
    Keywords: Hair cell ; Synapses ; Freeze-fracture ; Organ of Corti ; Guinea pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Afferent and efferent synapses of hair cells in the organ of Corti of the guinea pig have been examined in freeze-fracture replicas. Afferent synapse In the inner hair cells, intramembranous particles 10 nm in diameter are aggregated on the ridge on the P-face of the presynaptic membrane directly beneath the synaptic rod. In the outer hair cells, in which the synaptic rod is located in the presynaptic cytoplasm underneath the presynaptic membrane, small aggregations of intramembranous particles 10 nm in diameter can be found on the P-face of the presynaptic membrane corresponding to the site of the presynaptic dense projection. Intramembranous particles 10 nm in diameter are also densely aggregated on the P-face of the postsynaptic membrane of the outer hair cells. Efferent synapse of the outer hair cells Large intramembranous particles 13 nm in diameter are distributed in clusters composed of four to ten particles on the P-face of the presynaptic membrane. In the P-face of the postsynaptic membrane, disc-like aggregations of intramembranous particles 9 nm in diameter are found. The subsynaptic cistern covers the cytoplasmic surface of the postsynaptic membrane of the efferent synapse; it may cover more than one postsynaptic membrane when several efferent synapses are in close proximity to one another.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...