ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • BioMed Central  (79,536)
  • 2025-2025
  • 2015-2019  (39,847)
  • 2010-2014  (39,661)
  • 1955-1959  (28)
Collection
Language
Years
Year
  • 1
    Publication Date: 2022-10-18
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in GigaScience 4 (2015): 27, doi:10.1186/s13742-015-0066-5.
    Description: Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits.
    Description: This work was supported by the Micro B3 project, which is funded from the European Union’s Seventh Framework Programme (FP7; Joint Call OCEAN.2011‐2: Marine microbial diversity – new insights into marine ecosystems functioning and its biotechnological potential) under the grant agreement no 287589.
    Keywords: Ocean sampling day ; OSD ; Biodiversity ; Genomics ; Health index ; Bacteria ; Microorganism ; Metagenomics ; Marine ; Micro B3 ; Standards
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Authors, 2010. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in BMC Genomics 11 (2010): 643, doi:10.1186/1471-2164-11-643.
    Description: Increasing use of zebrafish in drug discovery and mechanistic toxicology demands knowledge of cytochrome P450 (CYP) gene regulation and function. CYP enzymes catalyze oxidative transformation leading to activation or inactivation of many endogenous and exogenous chemicals, with consequences for normal physiology and disease processes. Many CYPs potentially have roles in developmental specification, and many chemicals that cause developmental abnormalities are substrates for CYPs. Here we identify and annotate the full suite of CYP genes in zebrafish, compare these to the human CYP gene complement, and determine the expression of CYP genes during normal development. Zebrafish have a total of 94 CYP genes, distributed among 18 gene families found also in mammals. There are 32 genes in CYP families 5 to 51, most of which are direct orthologs of human CYPs that are involved in endogenous functions including synthesis or inactivation of regulatory molecules. The high degree of sequence similarity suggests conservation of enzyme activities for these CYPs, confirmed in reports for some steroidogenic enzymes (e.g. CYP19, aromatase; CYP11A, P450scc; CYP17, steroid 17a-hydroxylase), and the CYP26 retinoic acid hydroxylases. Complexity is much greater in gene families 1, 2, and 3, which include CYPs prominent in metabolism of drugs and pollutants, as well as of endogenous substrates. There are orthologous relationships for some CYP1 s and some CYP3 s between zebrafish and human. In contrast, zebrafish have 47 CYP2 genes, compared to 16 in human, with only two (CYP2R1 and CYP2U1) recognized as orthologous based on sequence. Analysis of shared synteny identified CYP2 gene clusters evolutionarily related to mammalian CYP2 s, as well as unique clusters. Transcript profiling by microarray and quantitative PCR revealed that the majority of zebrafish CYP genes are expressed in embryos, with waves of expression of different sets of genes over the course of development. Transcripts of some CYP occur also in oocytes. The results provide a foundation for the use of zebrafish as a model in toxicological, pharmacological and chemical disease research.
    Description: This work was supported by NIH grants R01ES015912 and P42ES007381 (Superfund Basic Research Program at Boston University) (to JJS). MEJ was a Guest Investigator at the Woods Hole Oceanographic Institution (WHOI) and was supported by grants from the Swedish research council Formas and Carl Trygger's foundation. AK was a Post-doctoral Fellow at WHOI, and was supported by a fellowship from the Japanese Society for Promotion of Science (JSPS). JZ and TP were Guest Students at the WHOI and were supported by a CAPES Ph.D. Fellowship and CNPq Ph.D. Sandwich Fellowship (JZ), and by a CNPq Ph.D. Fellowship (TP), from Brazil.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in BMC Genomics 14 (2013): 412, doi:10.1186/1471-2164-14-412.
    Description: Sexual reproduction is a widely studied biological process because it is critically important to the genetics, evolution, and ecology of eukaryotes. Despite decades of study on this topic, no comprehensive explanation has been accepted that explains the evolutionary forces underlying its prevalence and persistence in nature. Monogonont rotifers offer a useful system for experimental studies relating to the evolution of sexual reproduction due to their rapid reproductive rate and close relationship to the putatively ancient asexual bdelloid rotifers. However, little is known about the molecular underpinnings of sex in any rotifer species. We generated mRNA-seq libraries for obligate parthenogenetic (OP) and cyclical parthenogenetic (CP) strains of the monogonont rotifer, Brachionus calyciflorus, to identify genes specific to both modes of reproduction. Our differential expression analysis identified receptors with putative roles in signaling pathways responsible for the transition from asexual to sexual reproduction. Differential expression of a specific copy of the duplicated cell cycle regulatory gene CDC20 and specific copies of histone H2A suggest that such duplications may underlie the phenotypic plasticity required for reproductive mode switch in monogononts. We further identified differential expression of genes involved in the formation of resting eggs, a process linked exclusively to sex in this species. Finally, we identified transcripts from the bdelloid rotifer Adineta ricciae that have significant sequence similarity to genes with higher expression in CP strains of B. calyciflorus. Our analysis of global gene expression differences between facultatively sexual and exclusively asexual populations of B. calyciflorus provides insights into the molecular nature of sexual reproduction in rotifers. Furthermore, our results offer insight into the evolution of obligate asexuality in bdelloid rotifers and provide indicators important for the use of monogononts as a model system for investigating the evolution of sexual reproduction.
    Description: This work was funded by National Institutes of Health Institute of General Medical Sciences (grant number 5R01GM079484, to JML and DMW).
    Keywords: Evolution of sexual reproduction ; Differential expression analysis ; Gene ontology analysis ; Meiosis ; Gametogenesis ; Resting eggs ; Mixis induction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/fasta
    Format: application/vnd.ms-excel
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in BMC Bioinformatics 15 (2014): 41, doi:10.1186/1471-2105-15-41.
    Description: The advent of next-generation DNA sequencing platforms has revolutionized molecular microbial ecology by making the detailed analysis of complex communities over time and space a tractable research pursuit for small research groups. However, the ability to generate 105–108 reads with relative ease brings with it many downstream complications. Beyond the computational resources and skills needed to process and analyze data, it is difficult to compare datasets in an intuitive and interactive manner that leads to hypothesis generation and testing. We developed the free web service VAMPS (Visualization and Analysis of Microbial Population Structures, http://vamps.mbl.edu webcite) to address these challenges and to facilitate research by individuals or collaborating groups working on projects with large-scale sequencing data. Users can upload marker gene sequences and associated metadata; reads are quality filtered and assigned to both taxonomic structures and to taxonomy-independent clusters. A simple point-and-click interface allows users to select for analysis any combination of their own or their collaborators’ private data and data from public projects, filter these by their choice of taxonomic and/or abundance criteria, and then explore these data using a wide range of analytic methods and visualizations. Each result is extensively hyperlinked to other analysis and visualization options, promoting data exploration and leading to a greater understanding of data relationships. VAMPS allows researchers using marker gene sequence data to analyze the diversity of microbial communities and the relationships between communities, to explore these analyses in an intuitive visual context, and to download data, results, and images for publication. VAMPS obviates the need for individual research groups to make the considerable investment in computational infrastructure and bioinformatic support otherwise necessary to process, analyze, and interpret massive amounts of next-generation sequence data. Any web-capable device can be used to upload, process, explore, and extract data and results from VAMPS. VAMPS encourages researchers to share sequence and metadata, and fosters collaboration between researchers of disparate biomes who recognize common patterns in shared data.
    Description: Funding provided by the National Science Foundation [grant NSF/BDI 0960626 to SMH] and the Sloan Foundation through a collaborative project with the Microbiology of the Built Environment program.
    Keywords: Microbiome ; Microbial ecology ; Microbial diversity ; Data visualization ; Website ; Bacteria ; SSU rRNA ; Next-generation sequencing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in BMC Research Notes 7 (2014): 79, doi:10.1186/1756-0500-7-79.
    Description: As biological disciplines extend into the ‘big data’ world, they will need a names-based infrastructure to index and interconnect distributed data. The infrastructure must have access to all names of all organisms if it is to manage all information. Those who compile lists of species hold different views as to the intellectual property rights that apply to the lists. This creates uncertainty that impedes the development of a much-needed infrastructure for sharing biological data in the digital world. The laws in the United States of America and European Union are consistent with the position that scientific names of organisms and their compilation in checklists, classifications or taxonomic revisions are not subject to copyright. Compilations of names, such as classifications or checklists, are not creative in the sense of copyright law. Many content providers desire credit for their efforts. A ‘blue list’ identifies elements of checklists, classifications and monographs to which intellectual property rights do not apply. To promote sharing, authors of taxonomic content, compilers, intermediaries, and aggregators should receive citable recognition for their contributions, with the greatest recognition being given to the originating authors. Mechanisms for achieving this are discussed.
    Keywords: Scientific names ; Taxonomy ; Copyright ; Intellectual property rights ; Name-based infrastructure ; Big data
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Microbiome 3 (2015): 21, doi:10.1186/s40168-015-0082-9.
    Description: Microbial interaction between human-associated objects and the environments we inhabit may have forensic implications, and the extent to which microbes are shared between individuals inhabiting the same space may be relevant to human health and disease transmission. In this study, two participants sampled the front and back of their cell phones, four different locations on the soles of their shoes, and the floor beneath them every waking hour over a 2-day period. A further 89 participants took individual samples of their shoes and phones at three different scientific conferences. Samples taken from different surface types maintained significantly different microbial community structures. The impact of the floor microbial community on that of the shoe environments was strong and immediate, as evidenced by Procrustes analysis of shoe replicates and significant correlation between shoe and floor samples taken at the same time point. Supervised learning was highly effective at determining which participant had taken a given shoe or phone sample, and a Bayesian method was able to determine which participant had taken each shoe sample based entirely on its similarity to the floor samples. Both shoe and phone samples taken by conference participants clustered into distinct groups based on location, though much more so when an unweighted distance metric was used, suggesting sharing of low-abundance microbial taxa between individuals inhabiting the same space. Correlations between microbial community sources and sinks allow for inference of the interactions between humans and their environment.
    Description: This work was enabled by the generous support of the Alfred P Sloan foundation. This work was supported in part by the U.S. Dept. of Energy under Contract DE-AC02-06CH11357. S.M.G. was supported by an EPA STAR Graduate Fellowship and by a National Institutes of Health Training Grant 5 T-32 EB-009412.
    Keywords: Forensic microbiology ; Source-sink dynamics ; Shoe microbiome ; Phone microbiome ; Microbial time series
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/vnd.ms-excel
    Format: image/png
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in BMC Genomics 14 (2013): 266, doi:10.1186/1471-2164-14-266.
    Description: Nematostella vectensis, a burrowing sea anemone, has become a popular species for the study of cnidarian development. In previous studies, the expression of a variety of genes has been characterized during N. vectensis development with in situ mRNA hybridization. This has provided detailed spatial resolution and a qualitative perspective on changes in expression. However, little is known about broad transcriptome-level patterns of gene expression through time. Here we examine the expression of N. vectensis genes through the course of development with quantitative RNA-seq. We provide an overview of changes in the transcriptome through development, and examine the maternal to zygotic transition, which has been difficult to investigate with other tools. We measured transcript abundance in N. vectensis with RNA-seq at six time points in development: zygote (2 hours post fertilization (HPF)), early blastula (7 HPF), mid-blastula (12 HPF), gastrula (24 HPF), planula (5 days post fertilization (DPF)) and young polyp (10 DPF). The major wave of zygotic expression appears between 7–12 HPF, though some changes occur between 2–7 HPF. The most dynamic changes in transcript abundance occur between the late blastula and early gastrula stages. More transcripts are upregulated between the gastrula and planula than downregulated, and a comparatively lower number of transcripts significantly change between planula and polyp. Within the maternal to zygotic transition, we identified a subset of maternal factors that decrease early in development, and likely play a role in suppressing zygotic gene expression. Among the first genes to be expressed zygotically are genes whose proteins may be involved in the degradation of maternal RNA. The approach presented here is highly complementary to prior studies on spatial patterns of gene expression, as it provides a quantitative perspective on a broad set of genes through time but lacks spatial resolution. In addition to addressing the problems identified above, our work provides an annotated matrix that other investigators can use to examine genes and developmental events that we do not examine in detail here.
    Description: This work was supported by seed funds from the Brown-MBL Partnership and the National Science Foundation Graduate Student Research Fellowship. Infrastructure for data transfer from the sequencer was supported by the National Science Foundation EPSCoR Program under Grant No. 1004057 (Infrastructure to Advance Life Sciences in the Ocean State).
    Keywords: Nematostella vectensis ; Transcriptome ; Gene expression ; Maternal to zygotic transition ; Development
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: text/plain
    Format: application/pdf
    Format: image/png
    Format: application/x-sh
    Format: text/py
    Format: application/zip
    Format: text/r
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in BMC Evolutionary Biology 14 (2014): 6, doi:10.1186/1471-2148-14-6.
    Description: The non-migratory killifish Fundulus heteroclitus inhabits clean and polluted environments interspersed throughout its range along the Atlantic coast of North America. Several populations of this species have successfully adapted to environments contaminated with toxic aromatic hydrocarbon pollutants such as polychlorinated biphenyls (PCBs). Previous studies suggest that the mechanism of resistance to these and other “dioxin-like compounds” (DLCs) may involve reduced signaling through the aryl hydrocarbon receptor (AHR) pathway. Here we investigated gene diversity and evidence for positive selection at three AHR-related loci (AHR1, AHR2, AHRR) in F. heteroclitus by comparing alleles from seven locations ranging over 600 km along the northeastern US, including extremely polluted and reference estuaries, with a focus on New Bedford Harbor (MA, USA), a PCB Superfund site, and nearby reference sites. We identified 98 single nucleotide polymorphisms within three AHR-related loci among all populations, including synonymous and nonsynonymous substitutions. Haplotype distributions were spatially segregated and F-statistics suggested strong population genetic structure at these loci, consistent with previous studies showing strong population genetic structure at other F. heteroclitus loci. Genetic diversity at these three loci was not significantly different in contaminated sites as compared to reference sites. However, for AHR2 the New Bedford Harbor population had significant FST values in comparison to the nearest reference populations. Tests for positive selection revealed ten nonsynonymous polymorphisms in AHR1 and four in AHR2. Four nonsynonymous SNPs in AHR1 and three in AHR2 showed large differences in base frequency between New Bedford Harbor and its reference site. Tests for isolation-by-distance revealed evidence for non-neutral change at the AHR2 locus. Together, these data suggest that F. heteroclitus populations in reference and polluted sites have similar genetic diversity, providing no evidence for strong genetic bottlenecks for populations in polluted locations. However, the data provide evidence for genetic differentiation among sites, selection at specific nucleotides in AHR1 and AHR2, and specific AHR2 SNPs and haplotypes that are associated with the PCB-resistant phenotype in the New Bedford Harbor population. The results suggest that AHRs, and especially AHR2, may be important, recurring targets for selection in local adaptation to dioxin-like aromatic hydrocarbon contaminants.
    Description: This work was supported in part by the Hudson River Foundation (grant 004/02A; final report available at http://www.hudsonriver.org/ls/), by National Institute of Environmental Health Sciences (NIEHS) grant P42ES007381 (Superfund Basic Research Program at Boston University), by grant F32HD062178 from the Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHHD), and by the National Science Foundation (DEB-1120263). Data interpretation was aided by reference to a preliminary draft of the F. heteroclitus genome sequence, which was supported by funding from the National Science Foundation (collaborative research grants DEB-1120512, DEB-1265282, DEB-1120013, DEB-1120263, DEB-1120333, DEB-1120398).
    Keywords: Local adaptation ; Pollution ; Molecular mechanism ; Resistance ; Tolerance ; Convergent evolution ; Population genetics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/msword
    Format: application/vnd.ms-excel
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in BMC Systems Biology 8 (2014): 31, doi:10.1186/1752-0509-8-31.
    Description: Shewanella is a genus of facultatively anaerobic, Gram-negative bacteria that have highly adaptable metabolism which allows them to thrive in diverse environments. This quality makes them an attractive bacterial target for research in bioremediation and microbial fuel cell applications. Constraint-based modeling is a useful tool for helping researchers gain insights into the metabolic capabilities of these bacteria. However, Shewanella oneidensis MR-1 is the only strain with a genome-scale metabolic model constructed out of 21 sequenced Shewanella strains. In this work, we updated the model for Shewanella oneidensis MR-1 and constructed metabolic models for three other strains, namely Shewanella sp. MR-4, Shewanella sp. W3-18-1, and Shewanella denitrificans OS217 which span the genus based on the number of genes lost in comparison to MR-1. We also constructed a Shewanella core model that contains the genes shared by all 21 sequenced strains and a few non-conserved genes associated with essential reactions. Model comparisons between the five constructed models were done at two levels – for wildtype strains under different growth conditions and for knockout mutants under the same growth condition. In the first level, growth/no-growth phenotypes were predicted by the models on various carbon sources and electron acceptors. Cluster analysis of these results revealed that the MR-1 model is most similar to the W3-18-1 model, followed by the MR-4 and OS217 models when considering predicted growth phenotypes. However, a cluster analysis done based on metabolic gene content revealed that the MR-4 and W3-18-1 models are the most similar, with the MR-1 and OS217 models being more distinct from these latter two strains. As a second level of comparison, we identified differences in reaction and gene content which give rise to different functional predictions of single and double gene knockout mutants using Comparison of Networks by Gene Alignment (CONGA). Here, we showed how CONGA can be used to find biomass, metabolic, and genetic differences between models. We developed four strain-specific models and a general core model that can be used to do various in silico studies of Shewanella metabolism. The developed models provide a platform for a systematic investigation of Shewanella metabolism to aid researchers using Shewanella in various biotechnology applications.
    Description: This work was funded by a grant from the NSF (NSF 1053712) and was also supported by the Genomic Science Program (GSP), Office of Biological and Environmental Research (OBER), U.S. Department of Energy, and is a contribution of the PNNL Biofuels Scientific Focus Area (BSFA) and the PNNL Foundational Scientific Focus Area (FSFA).
    Keywords: Constraint-based model ; Electron acceptors ; Phenotype ; FBA
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/vnd.ms-excel
    Format: application/pdf
    Format: application/zip
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Zoology 11 (2014): 91, doi:10.1186/s12983-014-0091-8.
    Description: Calanus finmarchicus, a highly abundant copepod that is an important primary consumer in North Atlantic ecosystems, has a flexible life history in which copepods in the last juvenile developmental stage (fifth copepodid, C5) may either delay maturation and enter diapause or molt directly into adults. The factors that regulate this developmental plasticity are poorly understood, and few tools have been developed to assess the physiological condition of individual copepods. We sampled a cultured population of C. finmarchicus copepods daily throughout the C5 stage and assessed molt stage progression, gonad development and lipid storage. We used high-throughput sequencing to identify genes that were differentially expressed during progression through the molt stage and then used qPCR to profile daily expression of individual genes. Based on expression profiles of twelve genes, samples were statistically clustered into three groups: (1) an early period occurring prior to separation of the cuticle from the epidermis (apolysis) when expression of genes associated with lipid synthesis and transport (FABP and ELOV) and two nuclear receptors (ERR and HR78) was highest, (2) a middle period of rapid change in both gene expression and physiological condition, including local minima and maxima in several nuclear receptors (FTZ-F1, HR38b, and EcR), and (3) a late period when gonads were differentiated and expression of genes associated with molting (Torso-like, HR38a) peaked. The ratio of Torso-like to HR38b strongly differentiated the early and late groups. This study provides the first dynamic profiles of gene expression anchored with morphological markers of lipid accumulation, development and gonad maturation throughout a copepod molt cycle. Transcriptomic profiling revealed significant changes over the molt cycle in genes with presumed roles in lipid synthesis, molt regulation and gonad development, suggestive of a coupling of these processes in Calanus finmarchicus. Finally, we identified gene expression profiles that strongly differentiate between early and late development within the C5 copepodid stage. We anticipate that these findings and continued development of robust gene expression biomarkers that distinguish between diapause preparation and continuous development will ultimately enable novel studies of the intrinsic and extrinsic factors that govern diapause initiation in Calanus finmarchicus.
    Description: This work was supported by grant number OCE-1132567 from the National Science Foundation to MFB and AMT. Additional supported was provided by WHOI Early Career Scientist Awards provided to MFB and AMT.
    Keywords: Arthropod ; Crustacean ; Gene expression ; Molt cycle ; Transcriptomics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/vnd.ms-excel
    Format: text/plain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...